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ABSTRACT

Random-access algorithms such as CSMA provide a popular
mechanism for distributed medium access control in large-
scale wireless networks. In recent years, tractable models
have been shown to yield accurate throughput estimates for
CSMA networks. We consider the saturated model on a
general conflict graph, and prove that for each graph, there
exists a vector of activation rates (or mean back-off times)
that leads to equal throughputs for all users. We describe an
algorithm for computing such activation rates, and discuss
a few specific conflict graphs that allow for explicit charac-
terization of these fair activation rates.
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1. INTRODUCTION

Carrier-Sense Multiple-Access (CSMA) is a popular mech-
anism for distributed medium access control in wireless net-
works. Under CMSA, a node attempts to activate after a
certain random back-off time, but freezes its back-off timer
whenever it senses activity of an interfering node, until the
medium is again sensed idle. The local interactions lead to
rather complex behavior on a macroscopic scale, which can
be studied via models that assume that the interference con-
straints can be represented by a general conflict graph, and
that the various nodes activate asynchronously at exponen-
tial rates whenever none of their neighbors are presently ac-
tive. Such models were first pursued in the context of IEEE
802.11 systems by Wang & Kar [18], and further studied in
[3, 4, 5]. These models in fact long pre-date the IEEE 802.11
standard and were already considered in the 1980’s [1, 2, 10,
12]. The model has strong connections with Markov ran-
dom fields and migration processes, and can under certain
assumptions be interpreted as a special instance of a loss
network [9, 11, 15, 19].

In the classical models the activation rates (mean back-off
times) are assumed to be fixed, and the users are assumed
to have saturated buffers. When the activation rates are al-
lowed to be adapted and the buffer contents are driven by
packet arrivals and departures, there are simple necessary
and sufficient conditions for stability to be achievable. Sev-
eral authors have proposed clever backlog-based algorithms
for adapting activation rates that achieve stability when-
ever feasible to do so at all [6, 7, 8, 13, 14]. In contrast,
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we consider a scenario with saturated buffers, and aim at
determining the activation rates that will lead to all nodes
transmitting the same fraction of the time, thus ensuring a
long-term fair sharing of the medium (equal throughputs).
In this paper we address this problem for general conflict
graphs, extending the results in [16] for linear networks.

2. MODEL

Consider a network of nodes sharing the wireless medium
according to a CSMA-type protocol. The network is de-
scribed by an undirected conflict graph (V, E) where the set
of vertices V' = {1,..., N} represents the various nodes of
the network and the set of edges E C V x V indicates which
pairs of nodes interfere. Nodes that are neighbors in the
conflict graph are prevented from simultaneous activity, and
the independent sets correspond to the feasible joint activity
states. An inactive node is said to be blocked whenever any
of its neighbors is active, and unblocked otherwise.

We consider a scenario where nodes are saturated, i.e.,
always have packets to transmit. The transmission times of
node ¢ are independent and generally distributed with mean
1. After each transmission, a node starts a back-off period.
The back-off periods of node i are independent and generally
distributed with mean 1/X;. If a node becomes blocked, it
freezes its back-off period until all neighboring nodes have
become inactive.

Define Q C {0,1}" as the set of all feasible joint activ-
ity states of the network, i.e., the incidence vectors of the
independent sets of the conflict graph. Let Y (¢) € Q repre-
sent the activity state of the network at time ¢, with Y;(t)
indicating whether node ¢ is active (Y;(t) = 1) at time ¢ or
not (Yi(t) = 0). Denote by m(w) = limy_o P{Y(t) = w}
the limiting probability of the joint activity state w € Q.
This probability distribution has a product-form solution
(see e.g. [17])

N
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where Z is the normalization constant.

Denote the total number of feasible states by K + 1, and
write the state space as Q = {Qo,...,Qx}, where we index
the states such that state €g is the empty state, and €2;, i =
1,..., N represents the state in which only node 7 is active.
Introduce the N x K incidence matrix X with X;, = 1 when
the ith element in the state Qx equals 1, k =1,..., K. All
other elements of X are zero. So the columns of X jointly



describe all feasible activity states, with the exception of the
empty state.
We are primarily interested in the long-term behavior of

nodes, characterized by their throughputs. Let § = (01,...,0n)

denote the throughput vector, where 6; represents the frac-
tion of time node 7 is active. We have that

0=X-II, 2)
with IT = (7(1), ..., 7(Qk)).

3. MAIN RESULTS

We aim to solve for the vector A* = (A}, ..., A\§) € [0, 00)
that leads to equal throughputs for all nodes. From (2) it
is seen that this inversion problem involves solving a system
of nonlinear equations. We may rewrite (2) as
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with A = (A1,...,An). We first consider the mapping A —

n(A) = XeX' A for now ignoring the normalization con-
stant Z.

THEOREM 1. The mapping 1 is globally invertible on (0, 00)™ .

Thus, given a vector ¢ € (O,oo)N, there is a unique \* =
@) € (0,00)N such that n()\) = ¢.

Sketch of the proof. For any A € (0,00)", the functional
matrix

(aZ{) — (Z XijikXHAZXM)
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is the product of a sum of positive semi-definite matrices
and a diagonal matrix with positive diagonal elements. The

functional matrix has full rank since X;x = d;x for k =
1,..., N (Kronecker delta). Furthermore, it can be shown
that

max | In(n; (A))] — o0 (5)

as max; |[InA\;] — oo. Hence, the result follows from the
global inversion theorem. a

We henceforth assume that ¢ = c7, with ¢ € R4 and 7
the all-1 vector. To solve n(\) = ¢ we write

(XX M) = A+ AeGr(An) (6)
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Define the mapping H : Rf — ]Rf as

H(A) = (1 + gck(j\k)>k:1,m,N. (8)

Obviously, H : [0, +— [0,¢]™ and since M is continuous,
there exists a fixed point \* € [0,¢]" for which

HA) = A", (9)

3.1 Fixed-point iteration

The fixed point can be determined by an iteration that
starts with \® = 0 € [0,q", AD = HA®) = ¢ and
continues as

AD =AYy =12, (10)

Under the condition that none of G; = 0, it can be proved
by induction that (componentwise inequalities)
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for | = 1,2,.... The fixed-point iteration, however, may
fail in the sense that limj—eo A?Y < A* < limj_ oo AZD
(strict inequality). In this case one can use a Newton method
where the observation made in the proof of Theorem 1 on
the functional matrix is instrumental.

3.2 Closed-form solutions

For certain specific conflict graphs we can determine the
fixed point in closed form using the theory of Markov ran-
dom fields. The first result in this direction is due to Kelly [10],
who considered a tree with nearest-neighbor blocking. For
a linear network of N nodes, in which a transmitting node
blocks the first 5 nodes on both sides, the fixed point that
renders equal throughput takes the form [16]

A =o(140)D70)] (12)

with ~(¢) the number of nodes that can potentially block
node i, and o any positive constant. In this case the through-
out is given by
_ o

1+ (1480

Another model for which a closed-form solution exists is
the rectangular grid of size 2 X L in which a transmitting
node blocks its direct neighboring nodes (in horizontal and
vertical direction). It turns out that for all ¢ > 0, the
throughput is equalized by setting Aj = o when i is a corner
node, and

0;(\") (13)
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otherwise. This choice of \* yields throughputs
. o(l+o0)
0; = 1
(A9 1420(2+0) (15)

4. DISCUSSION

We finally discuss some topics for further research and
connections with other recent work.

4.1 Extended mapping

Recall from (3) that the mapping n only captures the
non-normalized throughput. In order to control the ac-
tual throughput, we need to consider the extended mapping
(with 7 the all-1 vector)

XtinA
A€ (0,00)N = 0(N) Xe —eimi(A).  (16)
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Here A denotes the convex hull of all feasible states in 2
(see e.g. [13]). The mapping in (16) can, of course, not be



inverted outside .A. The study of the mapping in (16) is
work in progress.

An alternative approach to control the throughputs is
to use the mapping 7. The inverse \* = A(¢) leads to a
throughput vector § = Z7'¢. Hence, Theorem 1 allows
us to equalize throughputs, but we cannot control the ac-
tual value (since Z depends on \). To achieve some specific
throughput level 6%, so that 8(\) = 6*7 € int(A), we can
recursively apply the following two-step procedure:

(i) Take some « € Ry, set ¢ = a7 and find A(¢) such that
n(A) = e

(ii) Calculate (\()) = Z(A(€)) '€, compare to #*7, and
adjust « accordingly.

4.2 Maximal schedules

It is well known that for large networks the calculation
of the normalization constant Z presents numerical difficul-
ties. Our inversion problem inherits these difficulties, as the
construction of the incidence matrix X requires all possible
states in Q (as does the calculation of Z). An interesting ap-
proximation for the inversion problem, which might be more
efficient, would be to restrict to the set of mazimal sched-
ules, defined as those states in which no additional node can
become active.

4.3 Critical load

As stated in the introduction, there are simple backlog-
based algorithms for adapting activation rates that achieve
stability whenever feasible at all [6, 7, 8, 13, 14]. In these
algorithms, the activation rate of a node i is some func-
tion F;(Q) = Fi(Q1,...,Qn) of the queue lengths at the
various nodes. When the load vector p = (p1,...,pn) is
‘near’ the boundary 9A of the feasible rate region, there
will be a ‘nearly unique’ throughput vector 6 € int(A) such
that p < 6. This suggests that in critical load the queue
lengths will behave in such a manner that the functions
Fi(Q1,...,Qn) correspond to the activation rates A; that
lead to the throughput vector 6, providing an interesting
connection between weighted fair activation rates and heavy-
traffic limits.
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