
Achieving Target Throughputs in Random-Access Networks

Abstract

Random-access algorithms such as CSMA provide a popular mechanism for distributed medium access

control in large-scale wireless networks. In recent years, tractable stochastic models have been shown to

yield accurate throughput estimates for CSMA networks. We consider a saturated random-access network

on a general conflict graph, and prove that for every feasible combination of throughputs, there exists a

unique vector of back-off rates that achieves this throughput. This result entails proving global invertibility

of the non-linear function that describes the throughputs of all nodes in the network. We present several

numerical procedures for calculating this inverse, based on fixed-point iteration and Newton’s method.

Finally, we provide closed-form results for several special conflict graphs using the theory of Markov

random fields.

1 Introduction

Carrier-Sense Multiple-Access (CSMA) is a popular mechanism for distributed medium access control in

wireless networks with conflicting nodes. Under CSMA, a node attempts to activate after a certain random

back-off time, but freezes its back-off timer whenever it senses activity of an interfering node, until the medium

is again sensed idle. The local interactions lead to rather complex behavior on a macroscopic scale, which

can be studied via models which assume that the interference constraints can be represented by a general

conflict graph, and that the various nodes activate asynchronously after some generally distributed back-off

time whenever none of their neighbors are presently active. Such models were first pursued in the context of

IEEE 802.11 systems by Wang & Kar [20], and further studied in [4, 5, 6]. These models in fact long pre-date

the IEEE 802.11 standard and were already considered in the 1980’s [1, 2, 10, 12] for the study of packet

radio networks. The model has strong connections with Markov random fields and migration processes, and

can under certain assumptions be interpreted as a special instance of a loss network [9, 11, 16, 22].

Our main object of interest is the throughput vector, which expresses for each node the rate at which

transmissions are completed. The throughput of a node is obtained by summing the stationary probabilities

of all states in which this node is active, and a key feature of this model is that the stationary measure of the
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activity state has a closed-form solution, also known as a Gibbs measure. The throughput vector is thus a

function of the Gibbs measure, and in fact is a highly non-trivial and non-linear function of the back-off rates.

Classical references mostly focus on the analysis of the network behavior, given the back-off rates. In this

paper we address the inverse problem of determining the back-off rates that achieve some target throughput

vector, and for this, we need to study in detail the non-linear function describing the throughputs.

The importance of choosing the back-off rates to achieve some target throughput vector is illustrated

by the observation that when all back-off rates are equal, the resulting network throughput is highly unfair

[4, 5, 20]. This unfairness is related to the fact that some nodes are in a spatially disadvantageous position

(e.g., have many neighbors). Intuition suggests that in order to resolve unfairness, the back-off times of

poorly positioned nodes should be shorter than those of high-throughput nodes. However, due to the complex

interactions between nodes, it is hard to see how to choose the back-off times exactly, in order to balance the

throughputs. This problem has been solved for special conflict graphs: regular trees [10], linear networks [19]

and certain rectangular grids [17], which obtain an exact description of the fair vector of back-off rates.

We are also interested in the more general problem of finding back-off rates that yield certain relative

throughputs, and we aim to do this for general conflict graphs. To this end we study the non-normalized

throughput function, and show that it is globally invertible. That is, for every target vector (s1, s2, . . . , sn) ∈

(0,∞)n, with si the relative throughput of node i, we can find a unique vector of mean back-off times that

achieves this target vector. The special case s1 = . . . = sn corresponds to fairness.

In addition to studying just the relative throughputs, we can also examine the throughput function

itself. This throughput function is obtained by dividing the non-normalized throughput by the normalization

constant. We may show that the full throughput function is also globally invertible, so for every achievable

throughput vector, there exists a unique vector of back-off rates that achieves this vector. The proof of this

result relies on the global invertibility of the non-normalized throughput and a monotonicity property of the

normalization constant.

Hence, our first contribution is that we prove global invertibility, for both the non-normalized and normal-

ized throughput functions. This result of course raises the question of how to actually compute the inverse,

or the vector of back-off rates that will render the throughput targets. Finding the inverse requires solving

a set of non-linear equations, which can be written as a fixed-point equation. Closed-form solutions of this

fixed-point equation exist only for a few specific choices of the network topology [10, 17, 19] in the case of

strict fairness. For the general conflict graph, we present three numerical methods to determine the fixed

point: fixed-point iteration, basic Newton iteration, and a continuation method (consisting of a sequence of

Newton iteration steps). The formulation of the inverse problem as a fixed-point equation that can be solved

numerically is the second contribution of this paper. A third contribution is that we exploit the theory of
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Markov random fields to find closed-form solutions to the fixed-point equations of specific conflict graphs, as

well as to decompose certain conflicts graphs into separate subgraphs for which the inverse problem can be

treated in isolation, reducing its complexity.

Our results pertain to the case where all nodes are saturated, and the back-off rates of nodes are fixed.

The case of fixed back-off rates is relevant, since in practice the adaptation of back-off parameters involves a

wide range of non-trivial implementation issues (finite-range precision, communication overhead, information

exchange), and hence it is important to gain insight in the achievable performance of non-adaptive algorithms.

Related results have been obtained for scenarios where the nodes each have a buffer fed by exogenous

arrival processes with certain rates, and the back-off rates can be adapted. For this case, several authors have

proposed clever backlog-based algorithms for adapting back-off rates which achieve stability whenever feasible

to do so at all, and thus can realize certain throughput vectors [7, 8, 13, 14, 15]. In fact, in this setting, a

result similar to Theorem 2 was derived in Section 5.1 of [7] by considering an optimization problem which

naturally arises in the context of the variational principle related to Gibbs measures and Markov random

fields. This optimization problem was shown to have a solution which corresponds to the vector of back-off

rates that will render a service rate vector that precisely matches the arrival rates. It was further established

in [7] that the time-varying backlog-dependent back-off rates, which are controlled via a specific distributed

algorithm, converge to such a vector of back-off rates. We show that these rates in fact form a unique solution.

The paper is organized as follows. In Section 2 we introduce the model and describe the product-form

solution for the stationary distribution and the throughputs. Our main results on global invertibility are

presented in Section 3. In Section 4 we describe several numerical methods for determining the inverse

throughput function. Section 5 is concerned with results for special conflict graphs. Finally, Section 6

presents some conclusions and a discussion. We denote R+ = (0,∞), and use boldface notation for vectors.

We write xi for the ith element of a column vector x. The transpose of a column vector x is a row vector,

denoted by xT .

2 Model description

Consider a network of nodes sharing the wireless medium according to a CSMA-type protocol. We say that

nodes are either active or inactive, depending on whether they are transmitting or in back-off, respectively.

The network structure is characterized by a conflict graph G(V,E), where the set of vertices V = {1, 2, . . . , n}

represents the nodes, and the set of (undirected) edges specify the interference constraints. Neighboring nodes

are prevented from simultaneous activity, so the independent sets of the graph correspond to the feasible

joint activity states. An inactive node is said to be blocked whenever any of its neighbors is active, and
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unblocked otherwise.

We assume the network to be saturated, which means that nodes always have packets available for

transmission. The transmission times of nodes are independent and generally distributed with unit mean.

After finishing a transmission, node i starts a generally distributed, independent back-off period with mean νi.

If a node in back-off becomes blocked, it freezes its back-off period until all neighboring nodes are inactive,

at which point the back-off period is resumed.

Define Ω ⊆ {0, 1}n as the set of all feasible joint activity states of the network, i.e., all independent

sets of the conflict graph. Denote the total number of feasible activity states by K + 1, and write Ω =

{ω0,ω1, . . . ,ωK}. The states are ordered such that ω0 = 0, the empty state, and ωk = ek, the kth unit

vector of Rn, k = 1, 2 . . . , n. Note that the case K = n corresponds to the complete conflict graph, at most

one node can be active at any time.

Let Y (t) ∈ Ω represent the activity state of the network at time t, with Yi(t) indicating whether node i is

active at time t (Yi(t) = 1) or not (Yi(t) = 0). Denote by π(y) = limt→∞ P{Y (t) = y} the limiting probability

that the activity state of the network is y ∈ Ω, which is given by the product form distribution [18]

π(y) = Z−1
n

∏

i=1

νyi

i ,

with Z =
∑

y∈Ω

∏n
i=1 ν

yi

i .

For later purposes, it is convenient to explicitly reflect the ordering of the states and the dependence on

the back-off rate vector ν = (ν1, ν2, . . . , νn)T in the notation, and introduce πk(ν) = π(ωk):

πk(ν) =
Λk(ν)

Z(ν)
, k = 0, 1, . . . ,K,

where (with ωk = (ωk,1, . . . , ωk,n)T )

Λk(ν) =

n
∏

i=1

ν
ωk,i

i (1)

and Z(ν) =
∑K

k=0 Λk(ν) is the normalization constant.

We are interested in the long-term behavior of the network, characterized by the throughputs of the

various nodes. Denote by θi(ν) the rate at which node i finishes packet transmissions, and write θ(ν) =

(θ1(ν), θ2(ν), . . . , θn(ν))T , the throughput vector of the network. As active nodes finish their transmissions

at unit rate, we have that

θ(ν) =

K
∑

k=0

πk(ν)ωk.

Let γ = (γ1, . . . , γn)T ∈ R
n
+ belong to the range Γ of the mapping θ : Rn

+ → Γ. In [8] it is shown that Γ is
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the interior of the convex hull formed by all states ω0,ω1, . . . ,ωK , i.e.,

Γ =
{

K
∑

k=0

αkωk

∣

∣

∣

K
∑

k=0

αk = 1, αk ≥ 0, k = 0, . . . ,K
}

.

The problem of finding back-off rates that achieve a certain throughput vector can be formalized as finding

νθ = νθ(γ) that solves

θ(νθ) = γ, (2)

and hence, we need to study in detail the mapping θ.

3 Global invertibility

We start by considering the non-normalized throughput

η(ν) = Z(ν)θ(ν) =

K
∑

k=0

Λk(ν)ωk.

This function is monotone in ν and hence easier to handle than the normalized throughput. In fact, we can

show the following result.

Theorem 1. The mapping η : Rn
+ → R

n
+ is globally invertible on its range R

n
+.

The proof of Theorem 1 is presented in Appendix A.1. Theorem 1 says that the range of η is R
n
+, and

that for any γ within the range of η, we can find a unique νη = νη(γ) that solves

η(νη) = γ. (3)

In some cases, it might be beneficial from a computational point of view to invert η rather than θ. Although

η only represents the non-normalized throughput, this is sufficient when interested solely in the throughputs

ratios (for instance, when aiming for fairness).

The crucial difference between η and θ is the normalization constant Z(ν), for which we have the following

result:

Lemma 1. Let c ∈ R
n
+, s > 0 and write νη(sc) for the unique ν ∈ R

n
+ such that η(νη(sc)) = sc. Then,

the function fc(s) = s/Z(νη(sc)) is injective.

The proof of Lemma 1 is presented in Appendix A.2. Lemma 1 suggests that we can control the throughput

θ via the non-normalized throughput η, and indeed, it turns out to be a crucial ingredient in the proof of

the following result:
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Theorem 2. The mapping θ : Rn
+ → Γ is globally invertible on Γ.

Proof. It suffices to show that θ is injective. Let ν1,ν2 ∈ R
n
+ be such that θ(ν1) = θ(ν2). Then we have

η(ν1) = Z(ν1)θ(ν1), η(ν2) = Z(ν2)θ(ν2). (4)

With c = θ(ν1) = θ(ν2) ∈ R
n
+, we consider the trajectory νη(sc), s > 0, for which we have

η(νη(sc)) = sc = Z(νη(sc))θ(νη(sc)). (5)

With s1 = Z(ν1), s2 = Z(ν2), it follows from Theorem 1 and (4), (5) that νη(s1c) = ν1, νη(s2c) = ν2, and

that

1

s1
Z(νη(s1c)) =

1

s2
Z(νη(s2c)).

Hence, by injectivity of fc(s), it follows that s1 = s2, so that ν1 = ν2.

Theorem 2 thus says that for any γ within the range of θ, there is a unique vector νθ = νθ(γ) that

solves (2). The proofs of Theorems 1 and 2 require the description of the entire network structure, which

appears at odds with the distributed nature of CSMA. However, in actual implementations, the back-off times

only have to be determined once, after which the nodes can operate fully autonomously. Thus, if the network

structure is fixed, or if the time scale on which it changes is slower than that of the network operations, we

retain a fully distributed CSMA protocol, while achieving the throughput targets.

4 Inversion methods

In Section 3 we established that both the non-normalized throughput η and the normalized throughput θ

are globally invertible on their respective ranges. In this section we present several numerical procedures to

compute the inverse of a given (normalized) throughput vector, as well as a light-traffic approximation of the

throughput inverse.

4.1 Fixed-point iteration

A first numerical procedure to determine the inverse vector is fixed-point iteration. This procedure follows

naturally from rewriting the system of non-linear equations (2) as fixed-point equations. We distinguish

between normalized throughput and non-normalized throughput.
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4.1.1 Non-normalized throughput

Write

θi(ν) =
n

∑

k=0

πk(ν)ωk,i +
K

∑

k=n+1

πk(ν)ωk,i = νi

1 +Gi(ν)

Z(ν)
, (6)

with

Gi(ν) =
1

νi

K
∑

k=n+1

Λk(ν)ωk,i. (7)

We can thus write (3) as

νη = H(νη), where H(ν) =
( γi

1 +Gi(ν)

)

i=1,...,n
,

and Gi as in (7). Note that H : [0,γ] → [0,γ], where we denote [0,γ] = [0, γ1] × · · · × [0, γn]. By global

invertibility of η, we know that νη is the unique fixed point that solves νη = H(νη). Alternatively, since H

is continuous, the existence of a fixed point also follows directly from Brouwer’s fixed point theorem.

The fixed-point iteration is defined as

ν(0)
η = 0, ν(l+1)

η = H(ν(l)
η ), l = 0, 1, . . . . (8)

We next show that the iterands obtained through (8) approach the fixed point in a monotone fashion.

Proposition 1. Assume that the conflict graph has no fully connected nodes (i.e., nodes that are connected

to all the other nodes). Then for i = 1, 2, . . . , n and l = 1, 2, . . . it holds that

0 = ν
(0)
η,i < ν

(2)
η,i < · · · < ν

(2l−2)
η,i < νη,i < ν

(2l−1)
η,i < ν

(2l−3)
η,i < · · · < ν

(3)
η,i < ν

(1)
η,i = γi. (9)

Proof. We have ν
(0)
η = 0 by definition, ν

(1)
η = γ since Gi(0) = 0, i = 1, . . . , n, and 0 < νη,i < γi, i = 1, . . . , n.

Now let l be such that (9) holds for all i = 1, . . . , n. Then νη,i < ν
(2l−1)
η,i , i = 1, . . . , n, and by the exclusion

of fully connected nodes we have that

Gi(νη) < Gi(ν
(2l−1)
η ), i = 1, . . . , n,

and so

Hi(νη) > Hi(ν
(2l−1)
η ) = ν

(2l)
η,i , i = 1, . . . , n,

i.e.,

νη,i > ν
(2l)
η,i , i = 1, . . . , n. (10)
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In a similar fashion it follows from (10) that

νη,i < ν
(2l+1)
η,i , i = 1, . . . , n.

The proof follows by induction.

Proposition 1 shows that the iteration scheme in (8) approaches the fixed-point ever more closely, although

it does not necessarily imply convergence.

4.1.2 Normalized throughput

We now present a similar fixed-point iteration scheme for νθ(γ). Setting θ(νθ) = γ and rewriting (6) yields

νθ = K(νθ) with

K(ν) =

(

γiZ(ν)

1 +Gi(ν)

)

i=1,...,n

. (11)

We have thus established that νθ(γ) is the unique solution to the fixed-point equation (11), and we can again

try to find νθ(γ) by iteration. That is, we let ν
(0)
θ = 0 and define recursively

ν
(l+1)
θ = K(ν

(l)
θ ), l = 0, 1, . . . . (12)

To gain some insight into this fixed-point iteration, we give below two special cases for which we can

prove convergence to the fixed point.

Example 1. (complete conflict graph) Assume that only one node may be active at any time. Let

γ = (γ, . . . , γ)T , γ ∈ R+. By symmetry, both the solution νθ(γ) as well as the iterands ν
(l)
θ , l = 0, 1, . . .

have identical components. Thus Z(νθ) = 1 + nνθ,1 and Gi(νθ) = 0. Iterating according to (12), gives for

all i = 1, 2, . . . , n,

ν
(l)
θ,i = γ(1 + nγ + · · · + (nγ)l−1), l = 0, 1, . . . ,

and νθ,i(γ) = liml→∞ ν
(l)
θ,i = γ

1−nγ
for γ < 1

n
. The requirement for convergence γ < 1

n
is equivalent to γ ∈ Γ.

In this particular example, νθ(γ) can also be determined analytically. Noting that at most one node can

be active at a time, and assuming all nodes to have the same back-off rate, it was shown in [18] that the

throughput of node i equals θi = νθ,1/(1 + nνθ,1). Solving γ = θi for νθ then gives the same result as the

fixed-point iteration.

Example 2. (disconnected graph) Assume that all nodes are isolated (E = ∅). As nodes do not interact

with each other at all, the throughput of node i equals νθ,i/(1 + νθ,i), and thus the choice νθ,i = γi/(1− γi),

yields per-node throughputs γ, γ < 1.
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The same result can be obtained by fixed-point iteration. Let γ = (γ, . . . , γ)T , γ ∈ R+, so the target

vector, solution and iterands have identical components. We have

Z(νθ) =

(

n

0

)

+

(

n

1

)

νθ,1 +

(

n

2

)

ν2
θ,1 + · · · +

(

n

n

)

νn
θ,1 = (1 + νθ,1)

n

and

Gi(νθ) =

(

n− 1

1

)

νθ,1 +

(

n− 1

2

)

ν2
θ,1 + · · · +

(

n− 1

n− 1

)

νn−1
θ,1 = (1 + νθ,1)

n−1 − 1,

so that

Ki(νθ) = γ(1 + νθ,1). (13)

By iterating (13), we get for all i = 1, 2, . . . , n,

ν
(l)
θ,i = γ + γ2 + · · · + γl, l = 0, 1, . . . .

Thus νθ,i(γ) = liml→∞ ν
(l)
θ,i = γ/(1 − γ), as expected.

Due to the inclusion of the normalization constant, the fixed point iteration for the normalized throughput

becomes theoretically less tractable than for the non-normalized throughput, and a counterpart to Propo-

sition 1 remains elusive. In applying the iteration, though, we encountered no convergence issues for the

fixed-point iteration. See Section 4.3 for an example. In fact, for both the non-normalized and normalized

throughputs the fixed-point iterations seems to work equally well.

4.2 Newton-based methods

A second numerical method for inverting the throughput function is Newton iteration. We present two

versions: classical Newton iteration, and a continuation method. The latter method consists of a sequence of

Newton iteration steps. Since there is no essential difference in these methods between the non-normalized

and normalized case, we present the numerical procedures only for the normalized throughput θ.

4.2.1 Classical Newton iteration

Recall from basic Newton iteration that one selects an initial vector ν
(0)
θ ∈ Γ, and iterates according to

ν
(l+1)
θ = ν

(l)
θ −

(∂θ

∂ν
(ν

(l)
θ )

)−1

(γ − θ(ν
(l)
θ )), l = 0, 1, . . . ,
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where

∂θ

∂ν
=

( ∂θi

∂νj

)

i=1,...,n;j=1,...,n

is the functional matrix, which also plays a crucial role in the proof of Theorem 1 (see (26) and further).

4.2.2 Continuation method

Let γ = sc, with c ∈ R
n
+ and s > 0. The general idea behind the continuation method is to compute a

sequence of back-off rates νθ(γ(l)), with γ(l) = lδc, and δ the step size such that s/δ is integer. Successive

iterands are computed by performing a single Newton iteration step:

ν
(l+1)
θ = ν

(l)
θ −

(∂θ

∂ν
(ν

(l)
θ )

)−1

(lδc − θ(ν
(l)
θ )), l = 0, . . . , s/δ.

The step size affects the accuracy of the resulting approximation, as well as the computation time. In

addition to finding νθ(γ), the continuation method approximates the entire path νθ(γ(l)), l = 0, 1, . . . , s/δ.

Similar to the fixed-point iteration, both Newton-based methods can be modified to work for η as well. This

is done in both cases by replacing the functional matrix ∂θ
∂ν

by ∂η
∂ν

(see (18) and further).

4.3 Comparison of inversion methods

To illustrate the inversion methods we consider a linear network with n = 15 nodes in which an active node

blocks all nodes within 5 hops. Note that for this particular network, we have a closed-form expression for the

target back-off rates, see [19] and Section 5. We set as target throughput γ = (1/5, . . . , 1/5) ∈ Γ. Each of the

three inversions methods (fixed-point iteration, Newton iteration and continuation method) for 30 iterations,

and compare in each step the back-off rates and throughputs to their respective target values. We measure

the error of the iterands by the Euclidean norm. The results are shown in Figure 1. Figure 1(a) plots the

error in the back-off rates, and Figure 1(b) shows the error in the corresponding throughputs. Both figures

show convergence of all three methods. Note that the error of the throughput estimate by the continuation

method decreases linearly in the number of steps, which is related to the incremental nature of this method.

More precisely, in its lth iteration this method produces an estimate for νθ(lδγ). If this estimate is accurate

(i.e., the estimate ν
(l)
θ yields a throughput vector close to lδγ), the throughput error indeed decreases linearly

in l.

In general, it is difficult to compare the various numerical methods, since the fixed-point method and

the Newton-based methods have different computational bottlenecks. For the Newton-based methods, the

initialization stage is the most cumbersome, in particular the computation of the matrix ∂θ
∂ν

(or ∂η
∂ν

). The
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Figure 1: The relative difference with the target back-off rates and throughputs for the iterands of the
fixed-point iteration (black), Newton iteration (gray) and continuation method (dashed).

iteration itself has a relatively low complexity. In contrast, the fixed-point method barely requires any

initialization, but its iteration stage typically takes longer than that of the Newton-based methods (when

aiming for equal accuracy). Thus, either method may be best, depending on the conflict graph, target

throughput and required accuracy.

4.4 Light-traffic approximation

Starting from the fixed-point equation (11) we derive an approximation for the inverse νθ(γ) that is accurate

when the elements of the normalized throughput vector γ are relatively small (a similar result can be obtained

for the non-normalized throughput):

Proposition 2. Let γ ∈ Γ and denote by Ni = {j : {i, j} ∈ E} the set of neighbors of node i. Then, as

‖γ‖ ↓ 0,

νθ,i(γ) = γi(1 + γi +
∑

j∈Ni

γj) +O
(

‖γ‖3
)

, i = 1, 2, . . . , n.

Proof. For ‖ν‖ ↓ 0, we know that Gi(νθ) = O
(

‖νθ‖
)

, and Z(νθ) = 1 +O
(

‖νθ‖
)

. Thus we obtain from (11)

νθ,i = γi +O
(

‖γ‖2
)

,

and hence νθ = γ +O
(

‖γ‖2
)

. Substituting this into (11) once more, and noting that Gi(γ) =
∑

j 6=i,j 6∈Ni
γj +
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O
(

‖γ‖2
)

, we deduce

νθ,i =
γi

(

1 +
∑n

j=1 γj +O
(

‖γ‖2
))

1 +Gi(γ) +O
(

‖γ‖2
) = γi(1 +

n
∑

j=1

γj) − γiGi(γ) +O
(

‖γ‖3
)

= γi(1 + γi +
∑

j∈Ni

γj) +O
(

‖γ‖3
)

, ‖γ‖ ↓ 0,

as required.

The approximation in Proposition 2 may be interpreted by observing that a fraction of the time γi +

∑

j∈Ni
γj + O

(

‖γ‖2
)

node i is prevented from activating due to either its own activity or that of one of

its neighbors. The first-order approximation can be extended to an infinite-series expression by using the

Lagrange-Good theorem [3]. However, the Lagrange-Good theorem in general requires cumbersome compu-

tations, and the result provides little insight.

5 Special conflict graphs

For certain specific conflict graphs, we can either find an exact expression for the fixed point νθ(γ), or we can

decompose the graph into several components in order to reduce the complexity of the inversion methods.

For this we shall exploit the fact that our model is a Markov random field. The crucial property of Markov

random fields that we will use is that for any subset S ⊆ V , the distribution of S is determined by the state

of its boundary, and is independent of all other nodes. That is, for a general conflict graph G, for any y ∈ Ω

and subset S ⊂ V , we have

P{Y S = yS |Y V \S = yV \S} = P{Y S = yS |Y ∂S = y∂S}, (14)

with Y S = (Yi)i∈S the components of the vector Y indexed by S, and ∂S = {j ∈ V \S : {i, j} ∈ E for some i ∈

S}, the boundary of S.

The next proposition identifies the ‘fair’ back-off rates that render equal throughputs for all nodes in a

linear topology. In particular, we consider n nodes on a line with a k-hop interference range, i.e., each node

interferes with up to k adjacent nodes to the left and to the right, n ≥ k.

Proposition 3. Consider the conflict graph that arises from the linear network described above, and let

γ = (γ, . . . , γ) with γ < 1/(k + 1). Then

νθ,i(γ) =
γ(1 − kγ)hi−1

(1 − (k + 1)γ)hi
,
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with

hi :=























i, i = 1, . . . , k,

k + 1, i = k + 1, . . . , n− k,

n− i+ 1, i = n− k + 1, . . . , n,

the number of interferers of node i minus k − 1.

Note that γ → 1/(k + 1) as νθ,i(γ) → ∞, i.e., the throughput approaches the maximum achievable

fair throughput as the back-off rates tend to infinity. Proposition 3 was originally proven in [19], and in Ap-

pendix A.3 we provide an alternative proof of Proposition 3 based on the Markov random field representation

of the stationary distribution of the joint activity state, extending the approach in Kelly [10].

Before proceeding, we first introduce some additional notation. For any subset S ⊆ V , we may consider

a modified version of the system with the nodes in V \ S removed, or equivalently, a system associated with

a conflict graph that is the subgraph of G induced by the nodes in S and the same back-off rates. For

brevity, we will call such a modified version the system induced by S. Denote by Y (S) a random variable

with the stationary distribution of the activity process in the system induced by S and by θ(S) the associated

throughput vector. Moreover, for any S ⊆ V , W ⊆ V \ S, let

∆(S; yW ) = S \
⋃

i∈W :yi=1

Ni

be the set of those nodes in S that are not blocked by nodes in W that are active under yW . By the Markov

random field property (14), we have that ∆(S; yV \S) := ∆(S; y∂S). Finally, let us denote by ΩS the state

space restricted to S.

Recall that Ni = {j : {i, j} ∈ E} is the set of neighbors of node i in the conflict graph G. We will now

apply the property (14) to show that the problem of finding the stationary distribution of S can be reduced

to finding the stationary distribution of several smaller systems, by conditioning on the state of ∂S.

Proposition 4. For any conflict graph G = (V,E), S ⊆ V , and yS ∈ {0, 1}|S|,

P{Y S = yS} =
∑

y∂S∈Ω∂S

P{Y (∆(S; y∂S)) = y∆(S;y∂S)} · I{
∑

i∈∂S

∑

j∈Ni
yiyj=0}P{Y

∂S = y∂S}.

The proof of Proposition 4 is given in Appendix A.4.

Proposition 4 may seem convoluted, but can very useful in certain conflict graphs for reducing the com-

plexity of solving the above inversion problems, by choosing the set S in a smart way. For example, consider

the conflict graph in Figure 2. In this case, the node set can be partitioned into two subsets V1 and V2 and

a single node v, so V = V1 ∪ V2 ∪ {v}. The sets V1 and V2 are not connected, and v shares edges with nodes

13



V1 V2

v

Figure 2: A decomposable graph.

in both subgraphs. We can decompose the graphs V1 and V2 as follows.

Corollary 1. For any y ∈ {0, 1}|V1|, we have

P{Y V1 = yV1} = P{Y (V1) = yV1}(1 − θv(V ))P{Y (V1 \ Nv) = yV1\Nv}I{yNv =0}θv(V ).

In particular, for any i ∈ V1 ∪ Nv,

θi(V ) = θi(V1)(1 − θv(V )), (15)

and for any i ∈ V1 \ Nv,

θi(V ) = θi(V1)(1 − θv(V )) + θi(V1 \ Nv)θv(V ). (16)

The proof of Corollary 1 is presented in Appendix A.5.

If we now substitute θv(V ) = γv into (15) and (16), then we see that the resulting inverse problem for

finding νθ,i only depends on the nodes in V1, and no longer requires knowledge about any node in V2. This

allows us to solve the inversion problems for V1 and V2 separately. Doing so considerably reduces complexity,

as the number of feasible states of the induced subgraph on V1 is much smaller than that of the entire graph.

The result in Corollary 1 can also be applied when v is replaced by a clique of nodes. Naturally, when the

conflict graph is disconnected, each of the components can also be handled separately.

6 Conclusion and outlook

In this paper we have established global invertibility of both the non-normalized and normalized throughput

function for wireless random-access networks with general conflict graphs. This fundamental result, presented

in Section 3, says that we can match any achievable throughput vector with a unique vector of back-off rates

that will lead to that target throughput vector. This result allows us, for example, to compute the back-off

14



rates that give equal throughputs, or instead to create various user classes by designing the back-off rates to

give certain nodes higher throughput than others.

We presented in Section 4 several algorithms for determining the (inverse) back-off rates. The implemen-

tation of the inversion algorithms involves the computation of the normalizing constant Z(ν), the (inverse

of) the functional matrix ∂θ
∂ν

, and the functions Gi in (7). These require the enumeration of the entire state

space Ω, which essentially boils down to counting all independent sets of the conflict graph, a problem which

is known to be computationally cumbersome for large graphs. An important task for future research is to

find ways of dealing with this curse of dimensionality. One possible approach is to exploit the structure of

the conflict graphs and using the theory of Markov random fields, as was done in Section 5.
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A Remaining proofs

A.1 Proof of Theorem 1

Rather than showing invertibility of η itself, we consider the mapping

f(x) = lnη(ex), x = (x1, x2, . . . , xn)T ∈ R
n,

with ex = (ex1 , ex2 , . . . , exn)T and lny = (ln y1, . . . , ln yn)T for y = (y1, y2, . . . , yn)T ∈ R
n. Because ln and

exp are invertible, global invertibility of f and η is equivalent.

By the main result in [21] we have that f is globally invertible if and only if (i) f is locally invertible and

(ii) maxi |fi(x)| → ∞ as maxi |xi| → ∞.

To show that condition (i) holds, it suffices to show that the functional matrix

∂f

∂x
=

( ∂fi

∂xj

)

i=1,...,n
j=1,...,n

,

is non-singular at any point x ∈ R
n. Observe that

∂fi

∂xj

=
1

ηi(ex)

∂ηi(e
x)

∂exj

∂x

∂xj

=
1

ηi(ν)

∂ηi(ν)

∂νj

νj .

Thus

∂f

∂x
= diag

( 1

η1(ν)
, . . . ,

1

ηn(ν)

)∂η

∂ν
diag(ν1, . . . νn), (17)

with

∂η

∂ν
=

( ∂ηi

∂νj

)

i=1,...,n
j=1,...,n

.

Because ν1, . . . , νn > 0, both diagonal matrices in (17) are non-singular, and we only have to verify that

∂η/∂ν is non-singular as well.

By taking the derivative of Λk(ν), see (1), with respect to νj , we get

∂Λk(ν)

∂νj

=
1

νj

Λk(ν)I{ωk,j=1}, k = 0, 1, . . . ,K, j = 1, . . . , n.
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Consequently,

∂ηi

∂νj

=
1

νj

K
∑

k=0

ωk,iωk,jΛk(ν), i, j = 1, 2, . . . , n. (18)

Thus the functional matrix ∂η
∂ν

may be written as

∂η

∂ν
= P(ν)D(ν),

with

P(ν) =

K
∑

k=0

Λk(ν)ωkωT
k ,

and

D(ν) = diag(ν−1
1 , . . . , ν−1

n ). (19)

The matrix P is positive definite since Λk(ν) > 0, ωk = ek, k = 1, 2, . . . , n. Therefore, ∂η
∂ν

is non-singular,

as required.

In order to verify condition (ii), we write η(ex) as

ηi(e
x) = exi

(

1 + e−xi

K
∑

k=n+1

Λk(ex)ωk,i

)

. (20)

Let

m = min
i

exi , M = max
i

exi ,

a = −min
i
xi, b = max

i
xi.

It is seen from (1) and (20) that

max
i
ηi(e

x) ≥M = eb, (21)

min
i
ηi(e

x) ≤ m(1 + (K − n)Mn−1) = e−a(1 + (K − n)e(n−1)b). (22)

Assume that maxi |xi| = max{a, b} → ∞. We need to show that maxi |fi(x)| → ∞ as well.

When b ≥ a we have

max
i

|fi(e
x)| ≥ b = max{a, b}. (23)
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When b ≤ a, we see from (21) and (22) that

max
i

|fi(x)| ≥ max{b, a− ln(1 + (K − n)e(n−1)b)} ≥ max{b, a−A−Bb},

for some A,B > 0 only depending on K,n. Now

min
0≤b∗≤a

max{b∗, a−A−Bb∗} ≥ b(a),

with b(a) the solution of b = a−A−Bb, i.e., b(a) = a−A
B+1 . Hence, when a ≥ b

max
i

|fi(e
x)| ≥

a−A

B + 1
=

max{a.b} −A

B + 1
. (24)

From (23) and (24) we see that

max
i

|fi(e
x)| → ∞

as max{a, b} → ∞, and the proof is complete.

A.2 Proof of Lemma 1

In order to prove this lemma, we compute some derivatives. We have, compare (18),

∂Z(ν)

∂νj

=

K
∑

k=0

ωk,j

1

νj

Λk(ν) =
1

νj

ηj(ν), j = 1, . . . , n.

Recall from (18) that

∂ηi

∂νj

=
1

νj

K
∑

k=0

ωk,iωk,jΛk(ν), i, j = 1, 2, . . . , n.

Differentiating η(νη(sc)) = sc with respect to s, we see that

∂η

∂ν
(νη(sc)) · ν ′

η(sc) = c,

i.e., that

ν′
η(sc) =

(d(νη(sc))1
ds

, . . . ,
d(νη(sc))n

ds

)T

=
(∂η

∂ν
(νη(sc))

)−1

c. (25)
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Moreover, we have

∂θi

∂νj

=
∂

∂νj

(ηi(ν)

Z(ν)

)

=
1

Z2(ν)

(∂ηi(ν)

∂νj

Z(ν) − ηi(ν)
∂Z(ν)

∂νj

)

=
1

νj

(

K
∑

k=0

πk(ν)ωk,iωk,j −
K

∑

k=0

πk(ν)ωk,i

K
∑

k=0

πk(ν)ωk,j

)

.

Note that
∑K

k=0 πk(ν) = 1 and that θ(ν) =
∑K

k=0 πk(ν)ωk. Hence we have

∂θi

∂νj

=
K

∑

k=0

πk(ν)
(

ωk − θ(ν)
)

i

(

ωk − θ(ν)
)T

j

1

νj

. (26)

So

∂θ

∂ν
= Q(ν)D(ν), (27)

with D the diagonal matrix in (19) and

Q(ν) =
K

∑

k=0

πk(ν)
(

ωk − θ(ν)
)(

ωk − θ(ν)
)T
. (28)

We shall show below that Q(ν) is positive definite. Assuming this, we compute from θ(νη(sc)) = s
Z(νη(sc))c,

for any s > 0

∂θ

∂ν
(νη(sc))ν ′

η(sc) = f ′
c(s)c. (29)

By (25) we have that ν′
η(sc) 6= 0 and by the fact that Q(ν) is positive definite and (27) we have that ∂θ

∂ν
is

non-singular at ν = νη(sc). Hence, the left-hand side of (29) is a non-zero vector and so f ′
c(s)c 6= 0. Hence

f ′
c(s) 6= 0 for any s > 0. Since fc(0) = 0, fc(s) > 0 for s > 0, the claim follows.

It remains to show that Q(ν) is positive definite. Assume y ∈ R
n is such that Q(ν)y = 0. Then

0 = yTQ(ν)y =

K
∑

k=0

πk(ν)
∣

∣(ωk − θ(ν))T y
∣

∣

2
,

and so, as πk(ν) > 0, k = 0, 1, . . . ,K, we have

(ωk − θ(ν))T y = 0, k = 0, 1, . . . ,K,

i.e.,

ωT
k y = θ(ν)T y, k = 0, 1, . . . ,K. (30)

Since ω0 = 0, we get θ(ν)T y = 0 from (30) with k = 0. Then, for k = 1, . . . , n, it follows from ωk = ek
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and (30) that

yk = ωT
k y = θ(ν)T y = 0.

Hence y = 0. We conclude that Q(ν) is non-singular, and then from (28) it is seen that Q(ν) is positive

definite.

A.3 Proof of Proposition 3

For conciseness, denote

ψi := P{Yi−k, . . . , Yi−1 = 0}, i = k + 1, . . . , n+ 1,

and

ai := P{Yi = 0|Yi−k, . . . , Yi−1 = 0}, i = k + 1, . . . , n.

By definition,

θi = P{Yi = 1} = P{Yi = 1, Yi−k, . . . , Yi−1 = 0}

= P{Yi = 1|Yi−k, . . . , Yi−1 = 0}P{Yi−k, . . . , Yi−1 = 0} = (1 − ai)ψi, (31)

for all i = k + 1, . . . , n.

The idea of the proof is to consider probabilities of the form P{Yi = 1, Yj = 0, j ∈ Ni} and P{Yi = 1, Yj =

1, j ∈ Ni} and use two different relationships between these in order to obtain a set of equations for the

coefficients ai.

First of all, it follows from the product form of the stationary distribution (or the local balance property)

that

P{Yi = 1, Yj = 0, j ∈ Ni} = νiP{Yi = 0, Yj = 0, j ∈ Ni},

for all i = 1, . . . , n.

The second relationship between these two probabilities follows from the Markov random field represen-

tation of the stationary distribution.

Specifically, for all i = 1, . . . , k, we may write

P{Yi = 0, Yj = 0, j ∈ Ni} =P{Y1, . . . , Yk = 0}
i

∏

l=k+1

P{Yi = 0|Y1, . . . , Yi−1 = 0}

= ψk+1

i
∏

l=k+1

P{Yi = 0|Yi−k, . . . , Yi−1 = 0} = ψk+1

i
∏

l=k+1

ai.
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For all i = k + 1, . . . , n, we may write

P{Yi = 0, Yj = 0, j ∈ Ni} = P{Yi−k, . . . , Yi−1 = 0}

min{i+k,n}
∏

l=i

P{Yl = 0|Yi−k, . . . , Yl−1 = 0}

= ψi

min{i+k,n}
∏

l=i

P{Yl = 0|Yl−k, . . . , Yl−1 = 0} = ψi

min{i+k,n}
∏

l=i

ai,

and

P{Yi = 1, Yj = 0, j ∈ Ni} =P{Yi−k, . . . , Yi−1 = 0}P{Yi = 1|Yj = 0, j ∈ N−
i }

min{i+k,n}
∏

l=i+1

P{Yl = 0|Yi = 1, Yi−k, . . . , Yi−1, Yi+1, . . . , Yl−1 = 0} = ψi(1 − ai),

yielding

P{Yi = 1, Yj = 0, j ∈ Ni}

1 − ai

=
P{Yi = 0, Yj = 0, j ∈ Ni}

ai

∏min{i+k,n}
j=i+1 aj

.

Now observe that ψi+
∑i−1

j=i−k θj = 1 for all i = k+1, . . . , n, and in particular ψk+1+
∑k

j=1 θj = 1. Combining

the above two sets of equations, we obtain

θi = νi(1 −
k

∑

j=1

θj)

i+k
∏

j=k+1

aj , (32)

for i = 1, . . . , k, while

1 − ai = νiai

min{i+k,n}
∏

j=i+1

aj, (33)

for all i = k + 1, . . . , n.

A solution to (33) is provided by ai = a and νi = (1 − a)a−hi , or equivalently νi = α(1 + α)hi−1, with

α = 1/a− 1 > 0. Taking νi = (1 − a)a−hi , i = 1, . . . , k, we obtain from (32)

θ1 = · · · = θk = θ = (1 − a)(1 − kθ),

i.e.,

θ1 = · · · = θk = θ =
1 − a

1 + k(1 − a)
=

α

1 + (k + 1)α
,

and (31) then yields

θ =
1 − a

1 + k(1 − a)
=

α

1 + (k + 1)α
for all i = k + 1, . . . , n.
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Noting that

a =
1 − (k + 1)θ

1 − kθ
or α =

θ

1 − (k + 1)θ

then completes the proof.

A.4 Proof of Proposition 4

The product form of the stationary distribution implies

P{Y S = yS | Y V \S = yV \S}

=
P{Y S = yS , Y V \S = yV \S}

P{Y V \S = yV \S}
=

P{Y = y}
∑

(xS ,yV \S)∈Ω P{Y S = xS , Y V \S = yV \S}

=

Z−1
n
∏

j=1

ν
yj

j

Z−1
∑

(xS ,yV \S)∈Ω

∏

i∈S

νxi

i

∏

i6∈S

ν
yj

j

= K−1(S; yV \S)
∏

j∈S

ν
yj

j ,

for any y ∈ Ω, with

K(S; yV \S) =
∑

xS :(xS ,yV \S)∈Ω

∏

i∈S

νxi

i .

Note that
∏

j∈S

ν
yj

j =
∏

j∈∆(S;y∂S)

ν
yj

j

for any y ∈ Ω. Likewise,
∏

i∈S

νxi

i =
∏

i∈∆(S;y∂S)

νxi

i

for any (xS ,yV \S) ∈ Ω.

Let Ω(S; yV \S) be the collection of independent sets in the subgraph of G induced by ∆(S; y∂S).

It is easily verified that (xS ,yV \S) ∈ Ω if and only if it holds that x∆(S;y∂S) ∈ Ω(S; y∂S). It follows that

the coefficient

K(S; yV \S) =
∑

x∆(S;y∂S)∈Ω(S;y∂S)

∏

i∈∆(S;y∂S)

νxi

i ,

and thus corresponds to the normalization constant of the system induced by ∆(S; y∂S).
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We conclude that

P{Y S = yS |Y V \S = yV \S} =

∏

j∈∆(S;y∂S)

ν
yj

j

∑

x∆(S;y∂S)∈Ω(S;y∂S)

∏

i∈∆(S;y∂S)

νxi

i

= P{Y (∆(S; y∂S)) = y∆(S;y∂S)},

for any y ∈ Ω. Informally speaking, the distribution of the activity state of the nodes in S in the original

system, conditional on the activity states of the remaining nodes, equals the stationary distribution of the

system induced by ∆(S; y∂S). Since ∆(S; y∂S) only depends on yV \S through y∂S , it further follows that

P{Y S = yS |Y V \S = yV \S} = P{Y S = yS |Y ∂S = y∂S}. This corroborates the fact that the stationary

distribution is a Markov random field with a neighborhood structure defined by the conflict graph G.

Now observe that

P{Y S = yS |Y V \S = yV \S} = P{Y S = yS |Y ∂S = y∂S} = 0

unless
∑

i∈∂S

∑

j∈Ni

yiyj = 0.

Thus we may write

P{Y S = yS |Y ∂S = y∂S} = P{Y (∆(S; y∂S)) = y∆(S;y∂S)}I{
∑

i∈∂S

∑

j∈Ni
yiyj=0},

for all y ∈ {0, 1}V , rather than just y ∈ Ω.

We deduce that

P{Y S = yS} =
∑

y∂S

P{Y S = yS |Y ∂S = y∂S}P{Y ∂S = y∂S}

=
∑

y∂S

P{Y (∆(S; y∂S)) = y∆(S;y∂S)}I{
∑

i∈∂S

∑

j∈Ni
yiyj=0}P{Y

∂S = y∂S}. (34)
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A.5 Proof of Corollary 1

For the specific graph under consideration, apply Proposition 4 with S = V1 so that ∂S = {v}. We have

P{Y V1 = yV1 |Y V \V1 = yV \V1} = P{Y V1 = yV1 |Yv = yv}I{yv

∑

j∈Nv
yj=0}

=











P{Y (V1) = yV1}, yv = 0,

P{Y (V1 \ Nv) = yV1\Nv}I{yNv =0}, yv = 1,

with P{Yv = 1} = 1 − P{Yv = 0} = θv(V ), so that (34) reduces to

P{Y V1 = yV1} = P{Y (V1) = yV1}(1 − θv(V )) + P{Y (V1 \ Nv) = yV1\Nv}I{yNv =0}θv(V ).

In particular, we obtain

θi(V ) =
∑

yV1 :yi=1

P{Y V1 = yV1}

=
∑

yV1 :yi=1

[

P{Y (V1) = yV1}(1 − θv(V )) + P{Y (V1 \ Nv) = yV1\Nv}I{yNv =0}θv(V )
]

=











θi(V1)(1 − θv(V )), i ∈ Nv,

θi(V1)(1 − θv(V )) + θi(V1 \ Nv)θv(V ), i 6∈ Nv.
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