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Abstract

The theory of orthogonal polynomial (Zernike) expansions of functions

on a disk, as used in the diffraction theory of optical aberrations, is

applied to obtain (semi-) analytical expressions for the spatial impulse

responses arising from a non-uniformly moving, baffled, circular pis-

ton. These expressions are in terms of the expansion coefficients of the

non-uniformity and the responses of the orthogonal expansion func-

tions. The latter impulse responses have a closed form as finite series

involving Legendre functions and the sinc function. The method is

compared with a similar method, proposed in [P.R. Stepanishen, J.

Acoust. Soc. Am. 70, 1176–1181, 1981] where zero-th order orthogonal

Bessel functions, rather than Zernike polynomials, are used as expan-

sion functions.

PACS numbers: 43.38 Ar, 43.20 Bi, 43.20 Px, 43.40 At

Keywords: impulse response, Zernike expansion, piston sound radiation,

non-uniform profile, loudspeaker, ultrasound
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I. INTRODUCTION

The calculation of the sound pressure occurring in loudspeakers and ultrasound due

to a vibrating, baffled, planar piston is often done by using the spatial impulse response

approach as can be found in Refs.1–7 for instance. After computation of the spatial impulse

responses, the spatial sound pressure is obtained by convolving the impulse responses with

the piston velocity waveform which can be any function of time. The required impulse

responses comprise a spatial source velocity distribution v, to be called velocity profile in

the sequel, the non-uniformity of which makes the computation of the responses a challenging

problem. In Ref.2, Sec. II.C and Ref.3, Sec. I, Harris presents ample review material and

history on the spatial impulse response approach, with due attention to the problem of

(analytically) computing impulse responses, in particular for circular pistons. Calculation

procedures for impulse responses of (apodized) pistons of different shapes were considered in

Ref.4. A rather recent survey on transient acoustics with many details for the circular and

rectangular (unapodized) piston can be found in Ref.5. In Ref.6, a number of numerically

oriented approaches for time-harmonic pressure calculations from spatial impulse responses

in the case of a circular piston with uniform velocity profile are compared and combined

using a grid sectoring method.

In this paper, a (semi-) analytic method for the computation of the spatial impulse

responses arising from a baffled, circular piston with non-uniform piston velocity profile v

is presented. A general, radially symmetric, velocity profile v(σ), vanishing outside σ ≤ a

(with a the piston radius and σ the radial distance from the origin in the piston plane) is

developed into the basis functions R0
2n(σ/a) = Pn(2(σ/a)2 − 1), n = 0, 1, ... , where Pn is

the Legendre polynomial of degree n. It will be shown that the impulse responses due to a

single basis function have an explicit, finite-series expression in terms of Legendre functions

a)Electronic mail: ronald.m.aarts@philips.com. Also at Technical University Eindhoven

Dept. EE, Den Dolech 2, PT3.23, P.O Box 513, NL-5600 MB Eindhoven, The Netherlands.
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and the sinc function. The spatial impulse response due to v is then obtained by a linear

combination of the appropriate basis functions using the expansion coefficients of v.

Zernike polynomial expansions were used by the authors8–10 recently in the field of acous-

tic radiation for the calculation of the pressure and related quantities. In Ref.8 and 9 this

has been done for the on-axis sound pressure, the pressure at the edge, the reaction on the

radiator, the far field and the directivity, and the total radiated power. In Ref.10, the sound

field due to a harmonically excited, flexible, spherical cap on a rigid sphere is computed

using expansions into appropriately warped Zernike polynomials of axially symmetric veloc-

ity profiles on the cap. The Refs.8, 9 were, among other things, aimed at systemizing and

generalizing the analytic results as obtained by Greenspan in Ref.11 on piston radiation.

Greenspan’s results in Ref.11, Sec. VI on transient responses, however, were not considered

yet and it is one of the aims of the present paper to find out what can be done in this respect.

The approach used in the present paper is to be compared with the one presented in

Ref.7, Sec. II, where, as a special case of the theory developed in Ref.7, Sec. I, the chosen basis

functions are of the form J0(αnσ/a), 0 ≤ σ ≤ a, with α0 = 0 and αn the nth positive zero of

the Bessel function J0 of the first kind and order 0. The impulse responses corresponding

to the terms J0(αnσ/a) are shown in Ref.7 to have a representation as an infinite series

involving the product of two Bessel functions and the sinc function. Hence, this also yields

a (semi-) analytic method to compute impulse responses in the case of flexible velocity

profiles on the piston. However, the series for the impulse responses have infinitely many

terms. Furthermore, the expansion coefficients with respect to the Bessel basis functions will

be shown to be more awkward in various respects than those that arise when the R0
2n(σ/a)

are chosen as basis functions. Also, see Ref.12 where the R0
2n(σ/a) are compared with respect

to coefficient decay with a set of basis functions of the Bessel type slightly different from

the one used in Ref.7.

In Sec. II, the geometry, notations and basic formulas are presented. In Sec. III, the

proof of the main result of this paper, the finite-series expression in Eqs. (23)-(24) for the

impulse responses due to any of the R0
2n(σ/a), σ ≤ a, is presented. In Sec. IV, the method is
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shown to generalize Greenspan’s result on the impulse responses due to low-order parabolic

velocity profiles (of the form (1− (σ/a)2)l, σ ≤ a), some plots of impulse responses (using a

Mathematica code presented in Appendix C) are shown, and the method is compared with

the one presented in Ref.7, Sec. II. In Sec. V, conclusions and directions for further research

are presented.

II. GEOMETRY, NOTATIONS AND BASIC FORMULAS

In this section, the basic formulas as well as the geometry and notations are presented.

The radiated pressure, due to a harmonic excitation exp(iωt), with ω the radian frequency,

of the harmonically vibrating flat surface S, a disk of radius a around the origin, is given by

the Rayleigh integral as

p(r, ω) =
iρ0ck

2π

∫
S

v(rs)
e−ikr

′

r′
dS , (1)

in which the time variable t and the factor exp(iωt) have been suppressed. In Eq. (1), ρ0 is

the density of the medium, c is the speed of sound in the medium, and k = ω/c is the wave

number. Furthermore, r is a field point in the half space in front of the baffle containing S,

rs is a point on the surface S, and r′ = |r − rs| is the distance between r and rs. Finally,

v(rs) is the normal component of the velocity on the surface S at rs, and the average velocity

Vs is given by

Vs =
1

πa2

∫
S

v(rs)dS . (2)

It is assumed that v(rs) = v(σ) is radially symmetric. See Fig. 1 for geometry and notations.

The velocity potential φ(r, ω) is given by

φ(r, ω) =
1

i ρ0 ck
p(r, ω) =

1

2π

∫
S

v(rs)
e−ikr

′

r′
dS . (3)

The velocity waveform of the field point r due to the harmonic excitation exp(iωt) is

given as φ(r, ω) exp(iωt) and can be regarded as the output of a time-invariant linear sys-

tem with impulse response function h(t; r). Hence, φ(r, ω) equals the Fourier transform
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FIG. 1. Geometry and notations. The piston is surrounded by an infinite rigid baffle.

∫∞
−∞ exp(iωt)h(t; r)dt of h(t; r) with respect to t. Therefore, from Eq. (3), the impulse re-

sponse h(t ; r) at time t > 0 and at field point r is obtained in the manner of Ref.7, Sec. I

or Ref.3, Sec. I.B by inverse Fourier transformation of the right-hand side of Eq. (3) with

respect to k and choosing appropriate polar coordinates in the piston plane while chang-

ing integration variables appropriately. For the readers’ convenience, the argument used in

Ref.7, Sec. I is briefly repeated in Appendix A. The result is that

h(t; r) =
c

πVs
H(ct− z)

A∫
0

v[(w2 +R2(t; z)− 2wR(t; z) cosα)1/2]dα , (4)

in which H is the Heaviside step function

H(x) = 0, x < 0; H(0) = 1/2; H(x) = 1, x > 0, (5)

and

R(t; z) =
√
c2t2 − z2 , ct ≥ z , (6)
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while

A =


0 , |w −R(t; z)| > a ,

arccos
(w2+R2(t;z)−a2

2wR(t;z)

)
, |w −R(t; z)| < a < w +R(t; z) ,

π , w +R(t; z) < a.

(7)

The velocity profiles considered in this paper are square integrable over S and radially

symmetric while they vanish for |rs| > a. These v’s admit a representation

v(σ) = Vs

∞∑
n=0

unR
0
2n(σ/a), 0 ≤ σ ≤ a , (8)

in which Vs is given in Eq. (2) and un are scalar coefficients with u0 = 1. In Eq. (8), R0
2n is

the radially symmetric Zernike circle polynomial of degree 2n, given by

R0
2n(ρ) = Pn(2ρ2 − 1), 0 ≤ ρ ≤ 1 , (9)

with Pn the Legendre polynomial of degree n, see Ref.13, Ch. 22.

III. PROOF OF THE MAIN RESULT

In this section, the main result of this paper is proved. That is, in Eq. (23) below, the

impulse response corresponding to a velocity profile as in Eq. (8) is given, for any t > 0 and

any field point r (see Fig. 1) explicitly as a series involving the expansion coefficients un and

certain functions T 0
2n(t ; r) given in finite terms in Eq. (24).

We have for the impulse response h(t ; r) in Eq. (4) that

h(t ; r) =
c

π
H(ct− z)

∞∑
n=0

un T
0
2n(t ; r) , (10)

where T 0
2n is defined as

T 0
2n(t; r) =

A∫
0

R0
2n[(w2 +R2 − 2wR cosα)1/2/a]dα

=

A∫
0

Pn
(
2
w2 +R2

a2
− 1− 4wR

a2
cosα

)
dα .

(11)
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Here we recall the definitions of R and A in Eqs. (6)–(7) and Eq. (9). Thus, in particular,

T 0
2n vanishes when |w −R| > a.

The integral T 0
2n in Eq. (11) can be evaluated using the addition theorem for Legendre

polynomials, see Ref.16, §220, pp. 364–371, in the form

Pn(cos γ cos γ′ − sin γ sin γ′ cosα) =

Pn(cos γ)Pn(cos γ′) + 2
n∑

m=1

(−1)m
(n−m)!

(n+m)!
Pm
n (cos γ)Pm

n (cos γ′) cosmα , (12)

with real γ and γ′ or

Pn(µµ′ −
√
µ2 − 1

√
µ′2 − 1 cosα) =

Pn(µ)Pn(µ′) + 2
n∑

m=1

(−1)m
(n−m)!

(n+m)!
Pm
n (µ)Pm

n (µ′) cosmα , (13)

with complex µ and µ′ such that Re(µ),Re(µ′) > 0 and µ, µ′ 6∈ (−∞, 1]. The Pm
n are the

Legendre functions, see Ref.13, Ch. 8.

In the case that w +R < a, Eq. (12) is used. In Appendix B it is shown that

cos γ cos γ′ = 2
w2 +R2

a2
− 1 , sin γ sin γ′ =

4wR

a2
(14)

holds when γ, γ′ ∈ (0, π) are given by

cos(γ + γ′) = 2
(w −R

a

)2

− 1 , cos(γ − γ′) = 2
(w +R

a

)2

− 1 . (15)

By Eq. (7), there holds A = π in this case. Integration of Eq. (12) over α ∈ [γ, π] then yields

T 0
2n(t; r) = πPn(cos γ)Pn(cos γ′) . (16)

In terms of w, R, a there holds

cos γ = uv − (1− u2)1/2 (1− v2)1/2 , cos γ′ = uv + (1− u2)1/2 (1− v2)1/2 (17)

with u = |w −R|/a, v = (w +R)/a.

In the case that |w−R| < a < w+R, Eq. (13) is used. In Appendix B it is shown that

µµ′ = 2
w2 +R2

a2
− 1 ,

√
µ2 − 1

√
µ′2 − 1 =

4wR

a2
(18)

8



is satisfied with Re(µ),Re(µ′) > 0 and µ, µ′ 6∈ (−∞, 1] when

µ = (µ′)∗ = cos 1
2

(γ1 + iγ2) , (19)

where γ1 ∈ (0, π), γ2 > 0 are given by

γ1 = arccos
[
2
(w −R

a

)2

− 1
]
, γ2 = arccosh

[
2
(w +R

a

)2

− 1
]
. (20)

By Eq. (7), there holds A ∈ (0, π) in this case. Integration of Eq. (13) over α ∈ [0, A], using

that Pm
n (µ′) = (Pm

n (µ))∗ yields

T 0
2n(t; r) = A

[
|Pn(µ)|2 + 2

n∑
m=1

(−1)m
(n−m)!

(n+m)!
|Pm
n (µ)|2sinc(mA)

]
. (21)

In terms of w, R, a there holds (u and v as above)

µ = uv − i(1− u2)1/2 (v2 − 1)1/2 . (22)

Summarizing, there holds for t > 0 and field point r

h(t; r) =
c

π
H(ct− z)

∞∑
n=0

unT
0
2n(t; r) , (23)

where

T 0
2n(t; r) =


0 , |w −R| > a ,

πPn(cos γ)Pn(cos γ′) , w +R < a ,

right-hand side of Eq. (21) , |w −R| < a < w +R ,

(24)

with R = (c2t2 − z2)1/2 = R(t ; z) > 0, and γ, γ′ ∈ (0, π) given in case that w + R < a by

Eq. (17) while A, µ in case that |w −R| < a < w +R are given by Eqs. (7), (22).

The computation scheme is presented concisely in Appendix C where also a Mathematica

code is supplied for the purpose of plotting impulse responses for a fixed value of z as a

function of t and w.

IV. DISCUSSION AND APPLICATION OF THE MAIN RESULT

The computation of impulse responses can be done using the following steps
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• expand the radially symmetric velocity profile v into a (possibly infinite, appropriately

truncated) Zernike series using expansion coefficients un as in Eq. (5),

• compute the contribution to the impulse response of each Zernike term as a finite

series according to Eqs. (23)-(24),

• form the linear combination of these contributions using the un as coefficients.

Feasibility of this approach depends critically on availability and rapid decay of the

coefficients un in the expansion of Eq. (8) for the velocity profile of interest.

As a first example, consider for ` = 0, 1, · · · the parabolic profiles

v(σ) = v(`)(σ) = (`+ 1)Vs(1− σ2/a2)`H(a− σ) . (25)

There is the finite expansion, see Ref.8, Appendix A.1,

v(l)(σ) = Vs

l∑
n=0

u(l)
n R0

2n(σ/a) , 0 ≤ σ ≤ a , (26)

where

u(l)
n = (−1)l (2n+ 1)

( l + 1

n+ 1

)
/
(l + n+ 1

n+ 1

)
, l = 0, 1, ..., n . (27)

Accordingly, the result of Greenspan in Ref.11, Sec. VI, where the v(l) with l = 0, 1, 2 are

considered, can be generalized in finite terms.

Similarly, for the monomial profiles, see Ref.8, Appendix A.1,

w(l)(σ) = (l + 1)Ws(σ
2/a2)lH(a− σ) , l = 0, 1, ... , (28)

there is the expansion

w(l)(σ) = Ws

l∑
n=0

(−1)l u(l)
n R0

2n(σ/a) , 0 ≤ σ ≤ a , (29)

where the u
(l)
n are given in Eq. (27). Hence, the w(l) have impulse responses that can be

computed in finite terms. Thus, when we have a profile of the form

v(σ) = Vs f((σ/a)2)H(a− σ) , (30)
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where f(x) has a convergent Taylor series
∑∞

l=0 al x
l, |x| ≤ 1, the impulse response of v(σ)

can be obtained, in principle, by linear combination of those of the w(l) in Eq. (29).

As a next example, consider the truncated Gaussian

v(σ ; b) =
b Vs

1− e−b
e−b(σ/a)

2

H(a− σ) , (31)

for which there is the expansion, see Ref.8, Appendix A.2,

v(σ ; b) = Vs

∞∑
n=0

un(b)R0
2n(σ/a) , 0 ≤ σ ≤ a , (32)

with

un(b) = (−1)n (2n+ 1)
b/2

sinh(b/2)

√
π

b
In+1/2(b/2) , n = 0, 1, ... , (33)

where I denotes the modified Bessel function, see Ref.13, Sec. 9.6. In Ref.11, Sec. VI.C,

Greenspan considers a non-truncated Gaussian (i.e., the piston has infinite radius a) and

derives a formula, also involving the modified Bessel function, for the impulse response. Due

to this different truncation strategy, this result is naturally different from what is obtained

via the approach of the present paper. See Fig. 2 for the spatial impulse responses for a) a

Gaussian velocity profile (b = 4), similar to Harris’ Fig. 5c (see Ref.3), using only nine terms

in the Zernike expansion in Eq. (32) as explained and detailed in Appendix C; and b) for a

rigid piston (un = 0 for n 6= 0 and u0 = 1); and c) for a simply supported radiator (un = 0

for n > 1 and u0 = 1, u1 = −1). In these plots, z = 1
2
a is fixed and 1

c
h(t; r) is displayed as

a function of the normalized variables ct/a and w/a in the range [0,2.5]x[0,1.5].

There are many more velocity profiles of the type as in Eqs. (26), (29), (32) allowing an

explicit form for their Zernike expansion coefficients. Among these are the to [0, a] truncated

Bessel functions, sinc functions, and cosines.

The decay of the Zernike coefficients is determined by the smoothness properties of the

velocity profile on the piston. For instance, see Ref.8, Appendix A.2, the truncated Gaussian

in Eq. (31) has coefficients un(b) that are significantly 6= 0 for integers n ranging from 0

to a little over 1
2
eb, after which very rapid decay occurs. Thus, the number of significant

coefficients grows linearly with the parameter b which quantifies the spikyness of v(σ ; b) at

11



(a)

(b)

(c)

FIG. 2. (Color online) Spatial impulse response for a) Gaussian velocity profile (b = 4) b)

rigid piston case (u0 = 1) ` = 0 in Eq. (25) c) simply supported radiator, case (u0 = 1,

u1 = −1) ` = 1 in Eq. (25).
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σ = 0. It is furthermore noted that all T 0
2n are bounded in modulus by π. This follows

from Eq. (11), the fact that 0 ≤ A ≤ π, and Ref.13, 22.14.7 on p. 786, which shows that

|Pn(x)| ≤ 1, |x| ≤ 1.

The method used by Stepanishen in Ref.7, Sec. II, is next compared with the method

in the present paper. Stepanishen uses Bessel functions J0(αj σ/a) as basis functions where

α0 = 0 and α1, α2, ... are the positive zeros of J0. These functions yield orthogonal expansions

for velocity profiles v(σ) of the type as considered in Eq. (30) according to

v(σ) = Vs

∞∑
j=0

sj J0(αj σ/a) , 0 ≤ σ ≤ a , (34)

where s0 = 1 and

sj =
2

J2
1 (αj)

1∫
0

f(ρ2) J0(αj ρ) ρ dρ (35)

for j = 1, 2, ... , see Ref.13, 11.4.1–5 on p. 485. Using Graf’s addition theorem for Bessel

functions, see Ref.13, 9.1.79 on p. 363, the impulse response arising from a single Bessel

term J0(αj σ/a) in accordance with Eq. (4) is expressed in Ref.7 as

cA

π

∞∑
m=−∞

Jm(αj w) Jm(αj R(t ; z)) sinc(mαj A) . (36)

The series in Eq. (36) is infinite while the one for T 0
2n, see Eqs. (24), (21), has at most

n + 1 terms. The convergence properties of series of the type in Eq. (36) is quite well

understood, however. The terms in the series in Eq. (36) are significantly 6= 0 for integers

m for which |m| ranges from 0 to a little over 1
2
e αj min {w,R(t ; z)} after which very rapid

decay occurs, see Ref.13, 9.3.1 on p. 365. Note also that αj ≈ (j − 1
4
) π, j = 1, 2, ... by

Ref.13, 9.5.12 on p. 371, and this increases linearly in j. So, the convergence matter of the

series in Eq. (36) requires some, but modest, care.

A second point is that the computation in analytic form of the coefficients sj in Eq. (35)

is cumbersome (except in the case that v(σ) is a finite linear combination of the J0(αjσ/a)).

In the case of polynomial profiles v(σ), a finite-terms expression, using repeated partial

integrations with zr Jr−1(z) dz = d(zr Jr(z)), see Ref.13, 9.1.30 on p. 361, can be derived,
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but this is already quite complicated. Moreover, even in this case, infinitely many sj are non-

vanishing. In the case of the truncated Gaussian profile, see Eq. (31), complicated special

functions like Lommel functions of two variables, see Ref.14, Subsec. 16.5 on pp. 537–550,

appear.

An even more serious problem is the fact that the expansion coefficients sj in Eq. (35)

decay slowly, also in cases of very well-behaved profiles v(σ). With v(σ) of the form in

Eq. (30) and K the smallest non-negative integer such that f (K)(1) 6= 0, the leading behavior

of sj as j gets large is given by

1

αj J2
1 (αj)

(−2

αj

)K
f (K)(1) JK+1(αj) . (37)

This follows from repeated partial integrations in Eq. (35) using zr Jr−1(z) dz = d(zr Jr(z))

as above for the polynomial profiles. Thus for a Gaussian profile as in Eq. (31), for which

we have that f(x) is a multiple of exp(−bx), there holds K = 0 in Eq. (37) and decay is

only as slow as j−1/2 as αj ≈ (j − 1
4
) π and J1(αj) ≈ (−1)j−1j1/2/π, see Ref.13, 9.5.12 on

p. 371 and 9.2.1 on p. 364. Also compare with the discussion at the end of Ref.12 where

Zernike expansion coefficients decay is compared with coefficients decay when J0(βj σ/a),

with β0 = 1 and β1, β2, ... the zeros of J
′
0, are used as expansion coefficients.

V. CONCLUSIONS AND OUTLOOK

Using Zernike expansions of radially symmetric velocity profiles on a baffled, circular

piston, a computation scheme for spatial impulse responses has been presented. The impulse

responses of the constituent basis functions R0
2n(σ/a) = Pn(2(σ/a)2−1) have been computed

explicitly as finite series involving Legendre functions and the sinc function. The method

has been compared in theory with the method introduced by P.R. Stepanishen that uses

orthogonal Bessel functions instead of Zernike polynomials. Among the advantages of the

method of this paper over Stepanishen’s method are finite series results for impulse responses

in the case of polynomial velocity profiles and better decay of expansion coefficients. This

14



latter point is also instrumental when the method is used in the reverse direction so as to

estimate velocity profiles in terms of expansion coefficients from measured spatial responses.

The authors intend to investigate this inverse method in more detail, including comparison

with earlier approaches to acoustical holography.

An extension of the finite-series representation of impulse responses to non-radially sym-

metric basis functions Zm
n (σ, ϕ) = eimϕ P

(0,m)
n−m

2

(2(σ/a)2 − 1) is envisaged as well. These Zm
n

are the general Zernike circle polynomials as used in the diffraction theory17–19 of optical

aberrations. In the case of non-radially symmetric velocity profiles, the impulse response

h(t ; r) can still be expressed in terms of an integral of the velocity profile along an arc in

the piston plane consisting of all points that are at the common distance ct from the field

point r. The generalization of the main result critically depends on the availability of an

addition theorem to write the mentioned integral with profile Zm
n in finite terms. Such an

addition theorem is indeed available and can be established by using the approach in Ref.15

on representing scaled and shifted Zernike circle polynomials.
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APPENDIX A: PROOF OF EQUATION (4)

The (normalized) impulse response is the inverse Fourier transform of the velocity po-

tential, that is,

h(t; r) =
1

2πVs

∞∫
−∞

eiωtφ(r;ω)dω (A1)

with φ(r;ω) given in Eq. (3). Since v is radially symmetric, so is φ(r;ω) and the field

point r can be taken to be (w, 0, z). In the integral at the right-hand side of Eq. (3), polar

coordinates (xs, ys) = (w, 0) − R(cosα, sinα) are taken with the projection (w, 0, 0) of the
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field point r on the piston plane as origin. Using

|rs| = (w2 +R2 − 2Rw cosα + z2)1/2 , |rs − r| = (R2 + z2)1/2 , (A2)

it follows that

φ(r, ω) =
1

2π

∞∫
0

2π∫
0

v((w2 +R2 − 2Rw cosα)1/2)
e−ik(R

2+z2)1/2

(R2 + z2)1/2
RdRdα . (A3)

Next, the substitution W = (R2 + z2)1/2 ≥ z is made. Writing R(W ; z) = (W 2 − z2)1/2 and

using RdR = WdW , there results

φ(r, ω) =
1

2π

∞∫
0

2π∫
0

v((w2 +R2(W ; z)− 2R(W ; z) cosα)1/2)e−ikWdWdα . (A4)

Then performing inverse Fourier transformation in Eq. (A1) and recalling that k = ω/c, it

follows that

h(t, r) =
c

2πVs

2π∫
0

v((w2 +R2(ct; z)− 2R(ct; z) cosα)1/2)dα H(ct− z) . (A5)

Here it has been used that

1

2π

∞∫
−∞

eiωt−iωW/cdω = δ(t−W/c) = cδ(W − ct) . (A6)

The formula in Eq. (4), with A as given in Eq. (7), then follows from the fact that v(rs)

actually vanishes for |rs| > a and some administration with inverse trigonometric functions.

APPENDIX B: LEGENDRE FUNCTIONS AND ADDITION FORMULA

There holds, see Ref.13, 8.6.6-7 on p. 334, for integer n,m with 0 ≤ m ≤ n that

Pm
n (x) = (−1)n (1− x2)

1
2
m dm Pn(x)

d xm
, − 1 < x < 1 , (B1)

and

Pm
n (z) = (z2 − 1)

1
2
m dm Pn(z)

d zm
, Re z > 0 , z 6∈ (−∞, 1] , (B2)
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where Pn is the Legendre polynomial of degree n and where the principal values of the square

roots are taken in Eqs. (B1)–(B2).

The two conditions in Eq. (14) are equivalent to the two conditions in Eq. (15) by

the addition theorem for cos. Since w + R < a by assumption and w,R > 0 there holds

2(w±R
a

)2 − 1 ∈ (−1, 1) and so Eq. (15) is satisfied with γ, γ′ satisfying 0 < γ′ ≤ γ < π and

given by 1
2

(α− ± α+) where

α± = arccos
(

2
(w ±R

a

)2

− 1
)
∈ (0, π) . (B3)

Then cos γ, cos γ′ can be computed from cos 1
2
(α− ± α+) using the addition theorem for cos

and cos 1
2
α = (1

2
(1 + cosα))1/2, sin 1

2
α = (1

2
(1− cosα))1/2 when 0 < α < π, and this yields

Eq. (17).

In the case that |w −R| < a < w +R, there holds

2
(w −R

a

)2

− 1 ∈ (−1, 1) , 2
(w +R

a

)2

− 1 > 0 , (B4)

and so γ1, γ2 in Eq. (20) can be taken such that γ1 ∈ (0, π), γ2 > 0. Therefore, cos 1
2
γ1,

sin 1
2
γ1, cosh 1

2
γ2, sinh 1

2
γ2 are all positive so that µ and µ′ in Eq. (19) satisfy Reµ,Reµ′ > 0

and µ, µ′ 6∈ (−∞, 1] by the addition theorem for cos. Letting γ = 1
2

(γ1 + i γ2), it follows

from µ′ = µ∗ that

µµ′ = cos γ cos γ∗ ,
√
µ2 − 1

√
µ′2 − 1 = sin γ sin γ∗ (B5)

(positive numbers at both sides at either equality). By the addition theorem for cos it is

then seen that

µµ′ +
√
µ2 − 1

√
µ′2 − 1 = cos(γ − γ∗) = cosh γ2 = 2

(w +R

a

)2

− 1 , (B6)

µµ′ −
√
µ2 − 1

√
µ′2 − 1 = cos(γ + γ∗) = cos γ1 = 2

(w −R
a

)2

− 1 , (B7)

and it follows that the two conditions in Eq. (18) are satisfied. Finally, the equality in

Eq. (22) follows in a similar fashion as the equalities in Eq. (17) were proved.
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APPENDIX C: COMPUTATION SCHEME FOR PLOTTING h(t; r)

With t > 0 and r = (w, 0, z) set

xa = w/a, ya = ct/a, za = z/a, ra = (y2
a − z2

a)
1/2 . (C1)

Assume that in good approximation

v(σ) = Vs

N∑
n=0

unR
0
2n(σ/a) . (C2)

Then in good approximation

h(t; r) ≡ h(xa, ya, za) =
c

π
H(ya − za)

N∑
n=0

unT2n(xa, ya, za) (C3)

where H is the Heaviside function and

T2n(xa, ya, za) =


0 , u > 1 ,

πPn(uv − (1− u2)1/2(1− v2)1/2)Pn(uv + (1− u2)1/2(1− v2)1/2) , v < 1 ,

A[|Pn(µ)|2 + 2
∑n

m=1(−1)m (n−m)!
(n+m)!

|Pm
n (µ)|2sinc(ma)] , u < 1 < v ,

(C4)

with u = |xa − ra|, v = |xa + ra| and

A = arccos
[x2

a + r2
a − 1

2xara

]
, µ = uv − i(1− u2)1/2(v2 − 1)1/2 . (C5)

For the case that v(σ) is given by Eq. (32) with b = 4 and Vs = 1 m/s, one can take N = 8

in Eq. (C2) (relative error ≤ 0.001%), and the un(b) are given by

un(b) = (−1)n(2n+ 1)
b/2

sinh(b/2)

(π
b

)1/2

In+1/2(b/2) , n = 0, 1, · · · , 8 . (C6)

This results for Fig. 2-a in the following Mathematica code.

u[n_, b_] := (-1)^n (2 n + 1) b/2/Sinh[b/2] Sqrt[Pi/b] BesselI[n + 1/2, b/2]

b=4

h[x_, y_, z_] := c/Pi UnitStep[y - z] Sum[u[n, b] T2[n, x, y, z], {n, 0, 8}]
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T2[n_, x_, y_, z_] := Module[{u, v, r},

r = Sqrt[y^2 - z^2]; u = Abs[x - r]; v = Abs[x + r];

Which[u >= 1, 0,

v <= 1,

Pi LegendreP[n, u v - Sqrt[1 - u^2] Sqrt[1 - v^2]] LegendreP[n,

u v + Sqrt[1 - u^2] Sqrt[1 - v^2]],

True,

With[{a = ArcCos[(x^2 + r^2 - 1)/(2 x r)],

\[Mu] = u v - I Sqrt[1 - u^2] Sqrt[v^2 - 1]},

a (Abs[LegendreP[n, \[Mu]]]^2 +

2 Sum[(-1)^m (n - m)!/(n + m)! Abs[LegendreP[n, m, \[Mu]]]^2

Sinc[m a], {m, 1, n}])]

]]

Plot3D[h[x, y, 0.5]/c, {x, 0, 1.5}, {y, 0, 2.55}, PlotRange -> {0, 5},

AxesLabel -> {w/a, ct/a, h/c}]

REFERENCES

1 P.R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J.

Acoust. Soc. Am. 49, 1629–1638 (1971).

2 G.R. Harris, “Review of transient field theory for a baffled planar piston,” J. Acoust.

Soc. Am. 70, 10–20 (1981).

3 G.R. Harris, “Transient field of a baffled planar piston having an arbitrary vibration

amplitude distribution,” J. Acoust. Soc. Am. 70, 186–204 (1981).

4 J.A. Jensen, “A new calculation procedure for spatial impulse responses in ultrasound,”

J. Acoust. Soc. Am. 105, 3266–3274 (1999).

5 T. Otani, “Physical principles and theoretical concepts of transient acoustic field,” Jpn.

J. Appl. Phys. 39, 2888–2897 (2000).

19



6 R.J. McGough, T.V. Samulski and J.F. Kelly, “An efficient grid sectoring method for

calculations of the near-field pressure generated by a circular piston,” J. Acoust. Soc.

Am. 115, 1942–1954 (2004).

7 P.R. Stepanishen, “Acoustic transients from planar axisymmetric vibrators using the

impulse response approach,” J. Acoust. Soc. Am. 70, 1176–1181 (1981).

8 R.M. Aarts and A.J.E.M. Janssen, “On-axis and far-field sound radiation from resilient

flat and dome-shaped radiators,” J. Acoust. Soc. Am. 125, 1444–1455 (2009).

9 R.M. Aarts and A.J.E.M. Janssen, “Sound radiation quantities arising from a resilient

circular radiator,” J. Acoust. Soc. Am. 126, 1776–1787 (2009).

10 R.M. Aarts and A.J.E.M. Janssen, “Sound radiation from a resilient spherical cap on a

rigid sphere,” J. Acoust. Soc. Am. 127, 2262–2273 (2010).

11 M. Greenspan, “Piston radiator: Some extensions of the theory,” J. Acoust. Soc. Am.

65, 608–621 (1979).

12 R.M. Aarts and A.J.E.M. Janssen, “Authors’ Reply on comments on ‘Estimating the ve-

locity profile and acoustical quantities of a harmonically vibrating loudspeaker membrane

from on-axis pressure data’,” J. Audio Eng. Soc. 58, 308-310 (2010).

13 M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, pp. 331–786.

(Dover, New York, 1972).

14 G.N. Watson, A Treatise on the Theory of Bessel Functions, pp. 411–415 and pp. 537–550.

(Cambridge University Press, Cambridge 1944).

15 A.J.E.M. Janssen, “Zernike circle polynomials and infinite integrals involving the product

of Bessel functions,” arXiv, 1007.0667v1, 5 July 2010, also available from the Eindhoven

University of Technology Library, ISBN: 978-90-386-2290-3.

16 E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, pp. 364–371. (Cam-

bridge University Press, Cambridge, 1955).

17 F. Zernike, “Diffraction theory of the knife-edge test and its improved version, the phase-

contrast method (published in German as “Beugungstheorie des Schneidenverfahrens und

seiner verbesserten Form, der Phasenkontrastmethode”),” Physica 1, 689–704 (1934).

20



18 B.R.A. Nijboer, The diffraction theory of aberrations. Ph.D. dissertation, University of

Groningen, The Netherlands 1942.

19 M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cam-

bridge, Chap. 9, 2002).

21



LIST OF FIGURES

FIG. 1 Geometry and notations. The piston is surrounded by an infinite rigid baffle. 6

FIG. 2 (Color online) Spatial impulse response for a) Gaussian velocity profile (b = 4)

b) rigid piston case (u0 = 1) ` = 0 in Eq. (25) c) simply supported radiator,
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