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Abstract
Loudspeakers are often modelled as a rigid piston in an infinite baffle.  This model is for real loudspeakers 
somewhat  limited  in  two ways.  One  issue  is  that  a  loudspeaker  is  not  rigid  and  a  second  issue  is  that  a 
loudspeaker  is  mostly used in  a  cabinet.  Both issues are  addressed  here by developing the velocity of  the 
radiator  in  terms  of  orthogonal  polynomials  known  from  optical  diffraction  theory  as  Zernike  circle 
polynomials. Using these polynomials we develop semi-analytic expressions for the sound pressure from the 
radiator in two different cases: as a flexible flat radiator mounted in an infinite baffle, and as the cap of a rigid 
sphere. In the latter case the comparison is done not only for the pressure but also for other quantities viz. the 
baffle-step response, sound power and directivity, and the acoustic center of the radiator. These quantities are 
compared with those from a real  loudspeaker.  Finally,  in the case of the baffled-piston radiation the spatial 
impulse response is presented.

1. Nijboer-Zernike approach in acoustics: ANZ
In recent years, the Nijboer-Zernike approach has been applied to solve forward and inverse 
problems in acoustical radiation from a flexible circular piston surrounded by a rigid infinite 
planar set (baffle) and from a flexible spherical cap on a rigid sphere [1-11]. The flexibility is 
embodied by a non-uniform velocity profile v that is assumed to be radially symmetric in the 
case of piston radiation and axially symmetric in the case of radiation from the cap. As in 
optical diffraction theory, the complex amplitude of the sound pressure in the baffled-piston 
case is given by a Rayleigh integral comprising the field point r in front of the baffle and the 
wave number k of the harmonic excitation applied to the piston with velocity profile v. The 
frequencies  that  are  used  in  acoustics  (20  Hz-20  kHz  in  audio  and  up  to  200  kHz  in 
ultrasound)  are  so  much  lower  than  those  used  in  optics  that  dispersion  effects  can  be 
neglected.  Furthermore,  although  the  phenomenon  of  focusing  does  manifest  itself  in 
acoustics (especially at higher frequencies), this does not occur usually to an extent that one 
can speak of a focal volume as in optics. Despite all these differences with optics, a wealth of 
analytic results, with the basic result of the classical Nijboer-Zernike theory as cornerstone, 
have been obtained for piston radiation and also for radiation from a spherical cap. In both 
cases, the non-uniform velocity profile is considered to be developed as a series involving the 
Zernike  polynomials  (appropriately  modified  in  the  case  of  spherical-cap  radiation).  The 
contribution  of  each  of  these  Zernike  terms  to  the  pressure  and various  other  acoustical 
quantities  turns  out  to  have  a  tractable  form,  and so  the  corresponding  quantity  for  the 
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velocity profile can be obtained in semi-analytic form by linear superposition. Due to the 
efficiency  of  the  Zernike  terms  in  representing  velocity  profiles  through  its  expansion 
coefficients, this offers the opportunity to estimate an unknown velocity profile v on the level 
of  expansion coefficients  from measured data in the field.  Here one can use a matching 
approach in which the unknown expansion coefficients are found by requiring an optimal 
match between the measured data and the theoretical expression comprising the coefficients.

2. Far-field pressure obtained from near-field measurements

In Fig. 1 below we have plotted the analytic expression for the far-field pressure in case of 
baffled-piston radiation  due to  the first  four  radially  symmetric  Zernike  terms.  The 
wave  number  k  of  the  applied  harmonic  excitation  and  the  angle  θ  between  the 
acoustical  axis  (perpendicular  to  the  baffle  and  passing  through  the  center  of  the 
circular piston) and the line segment connecting piston center and field point  r, have 
been combined into the single variable k a sin θ (a piston radius).

Figure 1: The far field pressure J2n+1  (ka sin θ)/ka sin θ as a function of wave number k, piston radius a and 
fieldpoint  angle  θ,  combined  into  the  single  variable  ka  sin  θ,  for  the  first  four  Zernike  terms  (radially 
symmetric).

In the case that we have a non-uniform velocity profile that can be accurately represented as a 
linear combination of the first four radially symmetric Zernike terms, one can thus compute 
the  corresponding  far-field  response  by  linear  super-position.  However,  the  required 
coefficients of such a linear combination are generally not available. It turns out that these 
coefficients can be estimated from measured on-axis pressure data. The key result here is an 
analytic expression, per radially symmetric Zernike term, for the on-axis pressure [1,3,4]. In 
Fig. 2 the modulus of the normalized on-axis pressure as a function of the normalized on-axis 
distance  is  plotted  for  the  case  of  the  first  four  radially  symmetric  Zernike  terms.  The 
procedure  then  consists  of  estimating  the  unknown  expansion  coefficients  of  the  piston 
velocity profile by 
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Figure 2: The modulus of the normalized on-axis pressure ½(l+1)| jl (kr_)hl
(2)(kr+)| with r±=½ (r2 + a2) ½ ±1/2r 

as a function of the normalized distance r/a for the first four radially symmetric Zernike terms.

matching the measured on-axis pressure data with the theoretical expression for the on-axis 
pressure comprising the unknown expansion coefficients. This procedure has been applied to 
a real loudspeaker. Thus, the on-axis pressure was measured at 10 near-field points. From 
these  near-field  data,  the  first  four  coefficients  of  the  radially  symmetric  Zernike  terms 
describing the velocity profile on the flexible membrane of the loudspeaker were estimated 
by  matching.  These  four  coefficients  were  fed  into  the  theoretical  linear  superposition 
expression for the on-axis pressure [2,3], and the result is displayed in Fig. 3. In this figure 
the 10 measured on-axis pressure values at normalized axial distance are shown as the solid 
line  connecting  the data  points,  and the estimated  on-axis  pressure arising from the four 
estimated coefficients by linear superposition is shown as the dotted line. 

Figure  3:  measured on-axis near-field pressure data points connected  by the black solid line pmeas,  and the 
estimated on-axis pressure prec, blue dotted line, as a function of the normalized distance r/a The loudspeaker is a 
Vifa MG10 SD09-08 with membrane radius a=3.2 cm and measured in an IEC-baffle at 13.72 kHz.
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The far-field of the loudspeaker can now also be predicted by linear superposition, using the 
four estimated coefficients, of the four far-field responses displayed in Fig. 1. Since the 
measurements  were  done  in  the  near-field  of  the  loudspeaker,  an  expensive 
measurement in the far-field of the loudspeaker by using an anechoic room has been 
avoided.

3. Comparing radiation from a loudspeaker and from a flexible 
spherical cap on a rigid sphere

It has been suggested by the theoretical physicists Morse and Ingard that the sound radiation 
of a loudspeaker in a box is comparable with that of a spherical cap on a rigid sphere when 
the volumes of box and sphere and the areas of the vibrating membrane and cap are matched. 
This has been established recently by Aarts and Janssen [7,9,11] who developed, starting 
from the series solution of the Helmholtz  equation with spherical  boundary conditions,  a 
Zernike- based computation scheme for the sound pressure on and around the sphere. Thus, 
the velocity profile on the cap is expanded in Zernike terms (appropriately modified so as to 
take account of the spherical, rather than flat, nature of the moving cap), and the contribution 
to the pressure of any field point of each of the Zernike terms is determined in semi-analytic 
form. In Fig. 4 three polar plots of the modulus of the pressure at four different frequencies 
and at one meter distance have been compared. The top figure shows the polar plot of a real 
loudspeaker (the same loudspeaker as the one used in Fig. 3). The middle figure shows the 
polar plot that arises in the case of baffled-piston radiation with a rigid piston (v is constant 
on the piston), and for this the analytic result shown in Fig. 1, n=0, has been used. The lower 
figure shows the polar plot of a flexible spherical cap in a rigid sphere with a velocity profile 
on the cap such that the component in the z-direction is constant, and for this the Aarts-
Janssen computation scheme has been used. The area of the piston and the area of the cap and 
the volume of the sphere have been chosen the same as the corresponding quantities of the 
real loudspeaker. As is apparent, the polar plots of the real loudspeaker and those obtained 
from the spherical-cap model resemble one another much more than the polar plots from the 
real  loudspeaker  and  those  obtained  from  the  baffled-piston  model.  This  remarkable 
agreement between results for the sphere model and the true loudspeaker continues to hold 
for  several  other  acoustical  quantities  such  as  the  baffle-step  response,  the  power  and 
directivity, and the acoustical center [7,11]. At low frequencies the baffle of a loudspeaker is 
small compared to its wavelength and radiates due to diffraction effects in the full space (4π-
field). At those low frequencies the radiator does not benefit from the baffle in terms of gain. 
At high frequencies the loudspeaker benefits from the baffle which yields a gain of 6 dB. 
This transition is called the baffle step and is illustrated in Fig. 5 below.
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Figure 4: Polar plots of the pressure at frequency 1 kHz (solid, black curves), 4 kHz (dotted, red curves), 8 kHz 
(dashed-dotted, blue curves), and 16 kHz (dashed, green curves), normalized such that the pressure is 1 at θ=0 
for a) loudspeaker (same as in Fig. 3) in a rectangular cabinet measured at 1 m distance, b) rigid piston in an 
infinite baffle, piston radius a=3.2 cm, using far-field response of Fig. 1, n=0, c) rigid spherical cap with z-
component of the velocity by profile equal to 1 m/s, cap aperture θ0=π/8, and r=1 in the Aarts-Janssen scheme 
[9].
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Figure 5: Frequency responses for θ=0 (solid curve), θ=π/9 (dotted curve), θ=2π/9 (dashed-dotted curve), and 
θ=3π/9 (dashed curve). (a) Baffle step of a polar cap θ0=π/8 on a sphere of radius R=0.082 m, at distance r=1 m, 
(constant velocity V=v0=1 m/s). All curves are normalized such that the SPL is 0 dB at 100 Hz. (b) Frequency 
response of a driver (same as in Fig. 3,4), radius a=3.2 cm mounted in a square side of a rectangular cabinet 
with dimensions 13x13x18.6 cm. The loudspeaker was measured in an anechoic room at 1 m distance. The on-
axis response was normalized to 0 dB at 200 Hz, the other curves were normalized by the same amount. (c) 
Response of a rigid piston (a=3.2 cm) in an infinite baffle in the far field. All curves are normalized such that 
the SPL is 0 dB at 100 Hz. 
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Figure 6 shows plots of the calculated power for a rigid spherical cap moving with a constant 
acceleration and various apertures, θ0=5π/32 (solid curve), θ0=π/8 (dotted curve), and θ0=π/10 
(dashed-dotted  curve),  together  with  the  power  obtained  from the  measured  loudspeaker 
(dashed-irregular curve) [7,11].

Figure 6: The power Re[P]c/(2πρ0 a2 R4) [dB] vs. kR (log. axis) of a rigid spherical cap moving with a constant 
acceleration  (V'=ikcV)  and  various  apertures,  θ0=5π/32  (solid  curve),  θ0=π/8  (dotted  curve),  and  θ0=π/10 
(dashed-dotted curve), sphere radius R=8.2 cm, together with the power from the measured loudspeaker (same 
as in Fig. 3-5) (dashed-irregular curve). The logarithmic horizontal axis runs from kR=0.1-20, corresponding to 
a frequency range from 66 Hz-13.2 kHz.

In  Fig.  7  the directivity  index DI from the spherical  cap model  and the  loudspeaker  are 
compared. This directivity index is a qualitative measure of how directive a particular sound 
radiator is: it is the 10 log 10 of the ratio of the modulus squared pressure on the axis in the 
far field produced by the considered radiator and the same quantity produced by a completely 
non-directive, point- source radiator, provided that the total radiated power of both radiators 
is the same [7,11].

Figure 7: The directivity index DI (explained in the text) of a rigid spherical cap with various aperture angles of 
the cap: 5π/32 rigid (solid, black curve), π/8 (dotted, red curve), and π/10 (dashed-dotted, blue curve), The long-
dashed, green curve starting for kR=0 at 3 (dB) is the directivity for a rigid piston in an infinite baffle, using the 
far-field response in Fig. 1, n=0.
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4. Acoustical spatial impulse response
In the case of baffled-piston radiation, the complex amplitude p(r;k) of the pressure at a field 
point r in front of the baffle due to a harmonic excitation of frequency ω=kc with c the speed 
of sound is given by one of the Rayleigh integrals [6,10].

Since  the  media  are  not  dispersive  at  the  relevant  frequencies,  this  Rayleigh  integral 
representation holds in the same form for all involved wave numbers k. In accordance with 
well-established practices in physical signal analysis, the spatial impulse response Φ(r; t) can 
be obtained by performing the Fourier transform of the velocity potential associated with p 
(r; k) with respect to k in which t is the Fourier variable. This Φ(r; t) is the impulse response 
at time t > 0 and at the field point r due to an instantaneous volume displacement at t=0 of the 
piston with non-uniform velocity profile v vanishing outside the piston, see Fig. 8 below. 

Figure 8: Geometry and notations of the pole cap s0.

According to the impulse response principle of acoustics, this Φ(r; t) can be obtained as the 
integral of the velocity profile v along the arc consisting of all points on the piston that have 
equal distance ct to the field point r. As a consequence, Φ(r; t) vanishes when ct is so small 
or so large that the arc is non-existing or does not contain piston points. In the case that 
v=v(σ), 0 ≤ σ ≤ a, is a radially symmetric profile on the circular piston of radius a and r=(0, 
0, z) is an on-axis point, the value of the impulse response Φ(r=(0, 0, z); t) is a multiple of v 
(σ=(c2t2–z2)  ½) when 0 < c2t2–z2 < a2 and 0 otherwise. Hence the radially symmetric profile 
v(σ), σ ≤ 0 ≤ a, is reproduced at each axial point (0, 0, z) in warped form where the warping 
takes places according to σ=(c2t2–z2)½. This yields an approach to estimating velocity profiles 
from on-axis impulse response data.
In  the  case  that  r is  a  general  non-axial,  point,  the  resulting  integral  expression  for  the 
impulse response Φ(r; t) is more complicated, even when v is radially symmetric. Now it 
turns out that the approach of developing v into a Zernike series provides the solution to the 
forward computation problem. Indeed, Aarts and Janssen [6,10] have shown that each of the 
Zernike terms involved in the expansion of v has an explicit, finite-terms expansion for the 
contribution to the impulse response. In Fig. 9, two impulse responses Φ(r=(w, 0, z); t) are 
shown, for the case that the normalized axial distance z/a from the piston plane equals ½, as a 
function of the normalized radial distance w/a from the axis and the normalized time variable 
ct/a. Figure 9 (a) shows this impulse response for the case that v is constant on the piston 
(rigid piston) and Fig. 9 (b) shows the impulse response for the case that v(σ)=exp (-4(σ/a)2), 
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0  ≤  σ  ≤  a.  The  latter  velocity  profile  can  be  accurately  represented  using  nine  radially 
symmetric Zernike terms, and each of these Zernike terms has a finite-series expression for 
its contribution to the impulse response.

(a)

(b)
Figure 9: Spatial impulse response Φ((w, 0, z); t) with constant value z/a=½ of the axial variable as a function 
of the normalized radial variable w/a and the normalized time variable ct/a for the cases that (a) v(σ)=1, 0 ≤ σ ≤ 
a, (b) v(σ)=exp (-4(σ/a) 2).

The forward computation method given above can also be used in the reverse direction in 
which unknown velocity profiles are estimated on the level of their expansion coefficients by 
matching impulse response data that are measured with the theoretical expression comprising 
the unknown expansion coefficients.
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5. Conclusions
Appropriately  warped  Legendre  polynomials  provide  an  efficient  and  robust  method  to 
describe velocity profiles of a non-rigid piston in a baffle and a flexible spherical cap on a 
rigid sphere. Only a few coefficients are necessary to approximate various velocity profiles. 
The polar plot of a rigid spherical cap on a rigid sphere has been shown to be quite similar to 
that of a real loudspeaker, and is useful in the full 4π-field.The cap model can be used to 
predict, besides polar plots, various other acoustical quantities of a loudspeaker including the 
sound pressure, baffle-step response, sound power, directivity, and the acoustic center. The 
method enables one to solve the inverse problem of calculating the actual velocity profile of 
the  cap  radiator  using  (measured)  on-  and  off-axis  sound  pressure  data.  This  computed 
velocity profile allows the extrapolation to far-field loudspeaker pressure data, including off-
axis behavior. Using Zernike expansions of radially symmetric velocity profiles on a baffled, 
circular piston, a computation scheme for spatial impulse responses is feasible.
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