
A generalization of the Zernike circle
polynomials for forward and inverse problems

in diffraction theory

A.J.E.M. Janssen
Eindhoven University of Technology,

Department EE and EURANDOM, LG 1.39,
P.O. Box 513, 5600 MB Eindhoven,

The Netherlands
e-mail: a.j.e.m.janssen@tue.nl

Abstract.
A generalization of the Zernike circle polynomials for expansion of functions
vanishing outside the unit disk is given. These generalized Zernike functions
have the form Zm,α

n (ρ, ϑ) = Rm,α
n (ρ) exp(imϑ), 0 ≤ ρ < 1, 0 ≤ ϑ < 2π,

and vanish for ρ > 1, where n and m are integers such that n− |m| is non-
negative and even. The radial parts are O((1 − ρ2)α) as ρ ↑ 1 in which α
is a real parameter > −1. The Zm,α

n are orthogonal on the unit disk with
respect to the weight function (1− ρ2)−α, 0 ≤ ρ < 1. The Fourier transform
of Zm,α

n can be expressed explicitly in terms of (generalized) Jinc functions
Jn+α+1(2πr)/(2πr)

α+1 and exhibits a decay behaviour r−α−3/2 as r → ∞.
This explicit result for the Fourier transform generalizes the basic identity in
the classical Nijboer-Zernike theory, case α = 0, of optical diffraction. The
generalized Zernike functions were considered by Tango in 1977 and a version
of the result on the Fourier transform is presented, however, in somewhat dif-
ferent form and without a detailed proof. The new functions accommodate
the solution of various forward and inverse problems in diffraction theory
and related fields in which functions vanishing outside the unit disk with
prescribed behaviour at the edge of the disk are involved. Furthermore, the
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explicit result for the Fourier transform of the Zm,α
n allows formulation and

solution of design problems, involving functions vanishing outside the unit
disk whose Fourier transforms and their decay are prescribed, on the level
of expansion coefficients with respect to the Zm,α

n . Cormack’s result for the
Radon transform of the classical circle polynomials admits an explicit gen-
eralization in which the Gegenbauer polynomials Cα+1

n appear. This result
can be used to express the radial parts Rm,α

n (ρ) as Fourier coefficients of
Cα+1
n (ρ cosϑ) and to devise a computation scheme of the DCT-type for fast

and reliable computation of the Rm,α
n (ρ).

In recent years, several (semi-) analytic computation schemes for forward
and inverse problems in optical (ENZ) and acoustic (ANZ) diffraction theory
have been developed for the classical case α = 0. Many of these schemes
admit a generalization to the cases that α �= 0. For instances that this is not
the case, a connection formula expressing the generalized Zernike functions
as a linear combination of the classical ones can be used. Various acoustic
quantities that can be expressed via King’s integral (involving the Hankel
transform of radially symmetric functions) can be expressed for the general
case that α �= 0 in a form that generalizes the form that holds for the case
α = 0. Furthermore, an inverse problem of estimating a velocity profile
on a circular, baffled piston can be solved in terms of expansion coefficients
from near-field data using Weyl’s representation result for spherical waves.
Finally, the new functions, case α = ±1/2, are compared with certain non-
orthogonal trial functions as used by Streng and by Mellow and Kärkkäinen
with respect to their ability in solving certain design problems in acoustic
radiation with boundary conditions on a disk.
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1 Introduction

In optical and acoustic radiation with boundary conditions given on a
disk, the choice of basis functions to represent the boundary conditions is of
great importance. Here one can consider the following requirements:

A. the basis functions should be appropriate given the physical background,

B. the basis functions should be effective and accurate in their ability of
representing functions vanishing outside the disk and arising in the par-
ticular physical context,

C. the basis functions should have convenient analytic results for transfor-
mations that arise in a natural way in the given physical context.

For the case of optical diffraction with a circular pupil having both phase
and amplitude non-uniformities, Zernike [1] introduced in 1934 his circle
polynomials, denoted here as Zm

n (ρ, ϑ) with radial variable ρ ≥ 0 and angular
variable ϑ, vanishing for ρ > 1, which find nowadays wide-spread application
in fields like optical engineering and lithography [2]–[7], astronomy [8]–[10]
and ophthalmology [11]–[13]. The Zernike circle polynomials are given for
integer n and m such that n− |m| is even and non-negative as

Zm
n (ρ, ϑ) = R|m|

n (ρ) eimϑ , 0 ≤ ρ < 1 , 0 ≤ ϑ < 2π ,

= 0 , ρ > 1 , (1)

where the radial polynomials R
|m|
n are given by

R|m|
n (ρ) = ρ|m| P (0,|m|)

n−|m|
2

(2ρ2 − 1) , (2)

with P
(α,β)
k the general Jacobi polynomial as given in [14], Ch. 22, [15], Ch. 4

and [16], Ch. 5, §4. The circle polynomials were investigated by Bhatia and
Wolf [17] with respect to their appropriateness for use in optical diffraction
theory, see issue A above, and were shown to arise more or less uniquely
as orthogonal functions with polynomial radial dependence satisfying form
invariance under rotations of the unit disk.

The orthogonality condition,

1∫
0

2π∫
0

Zm1
n1

(ρ, ϑ)(Zm2
n2

(ρ, ϑ))∗ ρ dρ dϑ =
π

n + 1
δm1m2 δn1n2 , (3)
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where n is either one of n1 and n2 at the right-hand side, together with
the completeness, see [18], App. VII, end of Sec. I, guarantees effective and
accurate representation of square integrable functions on the unit disk in
terms of their expansion coefficients with respect to the Zm

n , see issue B above.
The Zernike circle polynomials, notably those of azimuthal order m = 0, were
considered recently by Aarts and Janssen [19]–[22] for use in solving a variety
of forward and inverse problems in acoustic radiation. This raised in the
acoustic community [23] the question how the circle polynomials with m =
0 compare to other sets of non-polynomial, radially symmetric, orthogonal
functions on the disk. It was shown in [24] that the expansion coefficients,
when using circle polynomials, properly reflect smoothness of the functions
to be expanded in terms of decay and that they compare favourably in this
respect with the expansion coefficients that occur when using orthogonal
Bessel series expansions; the latter expansions are sometimes used both in
the acoustic and the optical domain, see [25]–[27].

The present paper focuses on analytic properties, see issue C above, of
basis functions, and in Sec. 2 we present a number of such properties for
the set of Zernike circle polynomials. In Sec. 3 a generalization of the set of
Zernike circle polynomials is introduced, viz. the set of functions

Zm,α
n (ρ, ϑ) = (1− ρ2)α ρ|m| P (α,|m|)

n−|m|
2

(2ρ2 − 1) eimϑ , 0 ≤ ρ < 1 ,

= 0 , ρ > 1 , (4)

with ρ, ϑ and n, m as before, see (1), and parameter α > −1. These
new Zernike-type functions arise sometimes more naturally in certain phys-
ical problems and can be more convenient when solving inverse problems in
diffraction theory since the decay in the Fourier domain can be controlled by
choosing the parameter α appropriately. While issue A above should guide
the choice of α, the matter of orthogonality and completeness is settled as
in the classical case α = 0. A more involved question is what becomes of
the analytic properties, noted for the classical circle polynomials in Sec. 2,
when α �= 0. A major part of the present paper is concerned with answering
this question, and this yields generalization of many of the results holding
for the case α = 0 and about which more specifics will be given at the end
of Sec. 3 where the basic properties of the generalized Zernike functions are
presented.
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2 Analytic results for the classical circle poly-

nomials

The Zernike circle polynomials were used by Nijboer in his 1942 thesis [28]
for the computation of the point-spread functions in near best-focus planes
pertaining to circular optical systems of low-to-medium numerical aperture.
In that case, starting from a non-uniform pupil function

P (ρ, ϑ) = A(ρ, ϑ) eiΦ(ρ,ϑ) , 0 ≤ ρ < 1 , 0 ≤ ϑ < 2π , (5)

the point-spread function U(r, ϕ ; f) at defocus plane f with polar coordi-
nates x+ iy = r eiϕ is given in accordance with well established practices in
Fourier optics as

U(r, ϕ ; f) =

1∫
0

2π∫
0

eifρ
2

e2πiρr cos(ϑ−ϕ) P (ρ, ϑ) ρ dρ dϑ . (6)

It was discovered by Zernike [1] that the Fourier transform of the circle
polynomials,

(F Zm
n )(r, ϕ) =

1∫
0

2π∫
0

e2πiρr cos(ϑ−ϕ) Zm
n (ρ, ϑ) ρ dρ dϑ (7)

has the closed-form result

(F Zm
n )(r, ϕ) = 2π in

Jn+1(2πr)

2πr
eimϕ , r ≥ 0 , 0 ≤ ϕ < 2π , (8)

where Jn+1 is the Bessel function of the first kind and order n+1. Thus, one
expands the pupil function P as

P (ρ, ϑ) =
∑
n,m

βmn Z
m
n (ρ, ϑ) , 0 ≤ ρ < 1 , 0 ≤ ϑ < 2π , (9)

and uses the result in (8) to compute the point-spread function U in (6) in
terms of the expansion coefficients βmn . In the case of best focus, f = 0, this
gives a computation result for the point-spread function immediately. For
small values of f , say |f | ≤ 1, one expands the focal factor,

eifρ
2

= 1 + ifρ2 − 1
2
f 2ρ4 − ... (10)

and spends some additional effort to write functions ρ2k Zm
n (ρ, ϑ) as a k-

terms linear combination of circle polynomials with upper index m to which
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(7) applies. Also see [18], Ch. 9, Secs. 2–4. These are the main features of
the classical Nijboer-Zernike theory for computation of optical point-spread
functions in the presence of aberrations.

In [29] Janssen has computed the point-spread function Um
n (r, ϕ ; f) per-

taining to a single term Zm
n in the form

Um
n (r, ϕ ; f) = 2π i|m| V |m|

n (r, f) eimϕ , (11)

where

V |m|
n (r, f) =

1∫
0

eifρ
2

R|m|
n (ρ) J|m|(2πρr) ρ dρ =

= eif
∞∑
l=0

(−if
πr

)l p∑
j=0

ulj
J|m|+l+2j+1(2πr)

2πr
(12)

with explicitly given ulj (p = 1
2
(n − |m|)). This result has led to what is

called the extended Nijboer-Zernike (ENZ) theory of forward and inverse
computation for optical aberrations. The theory in its present form allows
computation of point-spread functions for general f and for high-NA optical
systems, including polarization and birefringence, as well as for multi-layer
systems. See [30]–[34] and [35] for an overview. Furthermore, it provides a
framework for estimating pupil functions P , in terms of expansion coefficients
β, from measured data |U |2 of the intensity point-spread function in the focal
region. The latter inverse problem has the basic assumption that P deviates
only mildly from being constant so that the term with m = n = 0 in (9)
dominates the totality of all other terms. The theoretical intensity point-
spread function can then, with modest error, be linearized around the leading
term |β0

0 U
0
0 |2, and this leads, via a matching procedure with the measured

data in the focal region, to a first estimate of the unknown coefficients. This
procedure is made iterative by incorporating the totality of all deleted small
cross-terms (involving the βmn , (m,n) �= (0, 0), quadratically) in the matching
procedure using the estimate of the β’s from the previous steps. In practice
one finds that pupil functions P deviating from being constant by as much
as 2.5 times the diffraction limit can be retrieved. See [32], [33], [35], [36],
[37] for more details.

The result in (8) is one evidence of computational appropriateness of the
circle polynomials for forward and inverse problems, but there are others.
Many of these are based on the basic NZ-result in (8). In [38]–[39], Cormack
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used this result to calculate the Radon transform Rm
n ,

Rm
n (τ, ψ) =

∫

l(τ,ψ)

Zm
n (ν, μ) dl (13)

of Zm
n , with integration along the line ν cosψ+μ sinψ = τ in the plane with

τ ≥ 0 and ψ ∈ [0, 2π) and where (ν, μ) = (ρ cosϑ, ρ sinϑ). The result is that

Rm
n (τ, ψ) =

2

n+ 1
(1− τ 2)1/2 Un(τ) e

imψ , 0 ≤ τ ≤ 1 , 0 ≤ ψ < 2π , (14)

where Un is the Chebyshev polynomial of the second kind and degree n, [14],
Ch. 22. On this explicit form of the Radon transform of Zm

n , Cormack based
a method for estimating a function on the disk from its Radon transform
by estimating its Zernike expansion coefficients through matching. (In 1979,
Cormack was awarded the Nobel prize in medicine, together with Hounsfield,
for their work in computerized tomography.) Cormack’s result was used by
Dirksen and Janssen [40] to find the integral representation

Rm
n (ρ) =

1

2π

2π∫
0

Un(ρ cosϑ) cosmϑdϑ (15)

(integer m,n ≥ 0) that displays, for any ρ ≥ 0, the value of the radial part at
ρ in the form of the Fourier coefficient of a trigonometric polynomial. This
formula (15) can be discretized, error free when more that m+n equidistant
points in [0, 2π] are used, and this yields a scheme of the DCT-type for
computation of Rm

n (ρ).
A further consequence of the basic NZ-result (8) is the theory of shifted-

and-scaled circle polynomials developed in [41]. For given a ≥ 0, b ≥ 0
with a + b ≤ 1, there are developed explicit expressions for the coefficients
Kmm′
nn′ (a, b) in the expansion

Zm
n ((a+ bρ′ cosϑ′, bρ′ sinϑ′)) =

∑
n′,m′

Kmm′
nn′ (a, b)Zm′

n′ (ρ′ cosϑ, ρ′ sin ϑ′) . (16)

This generalizes the result in [42],

Rm
n (ερ) =

∑
n′=m(2)n

(Rn′
n (ε)−Rn′+2

n (ε))Rm
n′(ρ) , (17)

on the Zernike expansion of scaled circle polynomials (m ≥ 0).
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The basic NZ-result is also useful for the computation of various acoustic
quantities that arise from a circular piston in a planar baffle. The complex
amplitude p(r, k) of the sound pressure at the field point r = (x, y, z), z ≥ 0,
in front of the baffle plane z = 0 due to a harmonic excitation exp(iωt) with
wave number k = ω/c, with c the speed of sound, is given by Rayleigh’s
integral and King’s integral as

p(r, k) =
iρ0ck

2π

∫

S

v(σ)
e−ikr

′

r′
dS =

= iρ0ck

∞∫
0

e−z(u
2−k2)1/2

(u2 − k2)1/2
J0(wu) V (u) u du . (18)

Here ρ0 is the density of the medium, v(σ) is a non-uniform velocity profile
assumed to depend on the radial variable σ = (ν2 + μ2)1/2 on the piston
surface S with center 0 and radius a, and r′ is the distance from the field
point r to the point (ν, μ, 0) on S. Furthermore, w = (x2 + y2)1/2 is the
distance from the field point r to the z-axis, the root (u2 − k2)1/2 has the
value i

√
k2 − u2 and

√
u2 − k2 for 0 ≤ u ≤ k and u ≥ k, respectively with√

non-negative in both cases, and V (u) is the Hankel transform,

V (u) =

a∫
0

J0(uσ) v(σ) σ dσ , u ≥ 0 , (19)

of order 0 of v(σ).
In [19], the on-axis pressure p2l(r = (0, 0, z), k) due to v(σ) = R0

2l(σ/a),
0 ≤ σ ≤ a, was shown from Rayleigh’s integral and a special result on
spherical Bessel functions to be given as

p2l(r = (0, 0, z), k) = 1
2
ρ0 c(ka)

2(−1)l jl(kr−) h
(2)
l (kr+) , (20)

where jl and h
(2)
l are spherical Bessel functions, see [14], Ch. 10 and in par-

ticular 10.1.45–46, and r± = 1
2
[(r2 + a2)1/2 ± r]. This result was used in [19]

for estimating a velocity profile from on-axis pressure data on the level of
expansion coefficients with respect to radially symmetric circle polynomials.

In [20], the King integral for the pressure is employed to express the
pressure p((1, 0, 0), k) at the edge, the reaction force

∫
S

p dS and the total

radiated power
∫
S

p(0) v∗(σ) dS in integral form. Expanding v(σ) into radially
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symmetric circle polynomials and using the basic NZ-result for an explicit
expression of the Hankel transform V (u) in (19), this gives rise to integrals

∞∫
0

Jm(au) Jn+1(au)

(u2 − k2)1/2
du ,

∞∫
0

Jm+1(au) Jn+1(au)

(u2 − k2)1/2 u
du (21)

with integer m,n ≥ 0 of same parity. These integrals have been evaluated as
a power series in ka in [20].

In [21], the problem of sound radiation from a flexible spherical cap on a
rigid sphere is considered. The scaling theory of Zernike circle polynomials,
appropriately warped so as to account for the spherical geometry of the
problem, is used to bring the standard solution of the Helmholtz equation
with axially symmetric boundary data in a semi-analytic form per warped
Zernike term. This gives rise to a coefficient-based solution of the inverse
problem of estimating an axially symmetric velocity profile on the cap from
measured pressure data in the space around the sphere.

Finally, returning to baffled-piston radiation, in [22] the impulse response
h(r, t), t ≥ 0, at a field point r = (x, y, z) in front of the baffle is considered.
This h(r, t) is obtained as a Fourier inversion integral with respect to wave
number k of the velocity potential ϕ(r, k) = (iρ0ck)

−1 p(r, k), which can be
evaluated, via Rayleigh’s integral, as an integral of the velocity profile v over
all points in the baffle plane at a common distance (c2t2−z2)1/2 from the field
point. For the case that v(σ) = R0

2l(σ/a), 0 ≤ σ ≤ a, the latter integral can
be evaluated explicitly using the addition theorem for Legendre polynomials.
This explicit result can be used to compute impulse responses for general
v by expanding such a v into radially symmetric circle functions. And, of
course, an inverse problem, with a coefficient-based solution, can again be
formulated.

3 Generalized Zernike circle functions

The Zernike circle polynomials, see (1), all have modulus 1 at the edge
ρ = 1 of the unit disk while in both Optics and Acoustics it frequently occurs
that the non-uniformity behaves differently towards the edge of the disk.

In optical design, it is often desirable to have a pupil function P whose
point-spread function U , see (6), decays relatively fast outside the focal region
where the specifications of the designer are to be met. The Zernike circle
polynomials are discontinuous at the edge ρ = 1, and the corresponding
point-spread functions Um

n (r, ϕ ; f) have poor decay, like r−3/2 as r → ∞.
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In the ENZ point-spread functions, see Sec. 2, the key assumption is that
the pupil function’s deviation from being constant is not large. When |P |
gets small at the edge, which happens, for instance, when the source is a
pinhole with a positive diameter while the objective lens has a large NA, this
basic assumption is not met. In such a case, aberration retrieval with the
ENZ method may become cumbersome, even in its iterative version.

In the theory of acoustic radiation from a baffled, planar piston with
radially symmetric boundary conditions, Streng [43] follows the approach of
Bouwkamp [44] in solving the Helmholtz equation for this case and postulates
normalized pressure functions on the disk of the form

∞∑
n=0

an(1− ρ2)n+1/2 , 0 ≤ ρ < 1 . (22)

In the light of the later developments of this paper, it is interesting to note
here that Bouwkamp himself prefers expansions that involve the functions

(1− ρ2)1/2 P
(1/2,0)
l (2ρ2 − 1) = (−1)l P2l+1((1− ρ2)1/2) , 0 ≤ ρ < 1 . (23)

Similarly, Mellow [45] has velocity profiles on the disk of the form (normalized
to the unit disk)

v(ρ) =
∞∑
n=0

bn(1− ρ2)n−1/2 , 0 ≤ ρ < 1 . (24)

In [45] and [46]–[47], the postulates (22), (24) are used to solve design prob-
lems in acoustic radiation from a membrane in a circular disk in terms of the
expansion coefficients an, bn. In principle, these design problems could also
be solved when radially symmetric circle polynomials instead of (1−ρ2)n±1/2

were used as trial functions, but this would become cumbersome, the func-
tions (1 − ρ2)±1/2 themselves already having a poorly convergent expansion
with respect to the R0

2l(ρ).
In the three instances just discussed, it would be quite helpful when the

system of Zernike circle polynomials would be replaced by systems whose
members exhibit an appropriate behaviour at the edge of the disk. These
new systems should satisfy the requirements A, B and C mentioned in the
beginning of Sec. 1. In this paper, the set of functions

Zm,α
n (ρ, ϑ) = (1− ρ2)α ρ|m| P (α,|m|)

n−|m|
2

(2ρ2 − 1) eimϑ , 0 ≤ ρ < 1 , 0 ≤ ϑ < 2π

= 0 , ρ > 1 , (25)
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is considered for this purpose. In (25), the parameter α > −1, and n and m

are integers such that n − |m| is even and non-negative, and the P
(α,β)
k are

Jacobi polynomials as before. Observe that the radial parts

R|m|,α
n (ρ) = (1− ρ2)α ρ|m| P (α,|m|)

n−|m|
2

(2ρ2 − 1) , 0 ≤ ρ < 1 , (26)

depend non-polynomially on ρ, unless α = 0, 1, ... . The radial parts occur
essentially in Tango [48], Sec. 1, but there the factor (1− ρ2)α is replaced by
(1 − ρ2)α/2 with somewhat different restrictions on α and |m|. There is also
a relation with the disk polynomials as they occur, for instance, in the work
of Koornwinder [49]:

Zm,α
n (ρ, ϑ) = (1− ρ2)αDα

n+m
2

, n−m
2

(ρ eiϑ) , (27)

with
Dα
k,l(ρ e

iϑ) = ρ|k−l| P (α,|k−l|)
min(k,l) (2ρ

2 − 1) ei(k−l)ϑ (28)

for k, l = 0, 1, ... . Thus, the disk polynomials omit the factor (1 − ρ2)α

altogether.
Further definitions used in this paper are

p =
n− |m|

2
, q =

n+ |m|
2

(29)

for integers n and m such that n − |m| is even and non-negative, and the
generalized Pochhammer symbol

(x)y =
Γ(x+ y)

Γ(x)
. (30)

By orthogonality of the P
(α,β)
k (x) with respect to the weight function

(1− x)α(1 + x)β on [−1, 1], there holds

1

π

1∫
0

2π∫
0

(1− ρ2)−α Zm1,α
n1

(ρ, ϑ)(Zm2,α
n2

(ρ, ϑ))∗ ρ dρ dϑ =

=
(p+ 1)α

(p+ |m|+ 1)α

δm1m2 δn1n2

n1 + α+ 1
. (31)

We note that for any integer N = 0, 1, ...

ρ|m| P (α,|m|)
n−|m|

2

(2ρ2 − 1) eimϑ (32)

11



with n = 0, 1, ..., N and m = −n,−n+ 2, ..., n are 1
2
(N + 1)(N + 2) linearly

independent functions of the form
∑

i,j aijν
iμj (ν = ρ cosϑ, μ = ρ sinϑ)

where the summation is over integer i, j ≥ 0 with i + j ≤ N . Therefore, by
Weierstrass theorem the functions in (32) are complete.

This paper focuses on establishing versions for the generalized Zernike
functions of the analytic results that were presented for the classical circle
polynomials in Sec. 2. Thus, in Sec. 4, the Fourier transform of Zm,α

n is
computed in terms of Bessel functions and a Weber-Schafheitlin representa-
tion of the radial functions Rm,α

n is given. In Sec. 5, the Radon transform
of Zm,α

n is computed in terms of the Gegenbauer polynomials Cα+1
n , and a

representation of the radial functions as Fourier coefficients of the periodic
function Cα+1

n (ρ cosϑ), 0 ≤ ϑ < 2π, for a fixed ρ ∈ [0, 1) is given. Thus a
computation scheme of the DCT-type for the radial functions arises. Then,
in Sec. 6, a scaling result is given. This result is somewhat more awkward
than in the classical case since the radial functions Rm,α

n (ρ) have restrictions
on their behaviour as ρ ↑ 1 while the scaled radial functions Rm,α

n (ερ), to
be considered with 0 < ε < 1, do not. Next, in Sec. 7, the new Zernike
functions are expanded in terms of the classical circle polynomials, with an
explicit expression for the expansion coefficients. This makes it possible to
transfer all forward computation results from the ENZ theory and from the
acoustic Nijboer-Zernike (ANZ) theory for the classical case to the new set-
ting in a semi-analytic form. This is useful for those cases that a closed
form or a simple semi-analytic form is not available or awkward to find in
the new setting. In Secs. 8–10, the focus is on generalizing the results from
the ANZ theory, as developed in [19]–[22] to the more general setting. This
gives rise in Sec. 8 to a power series representation of the basic integrals that
occur when various acoustic quantities are computed from King’s integral
for the sound pressure (in the case of baffled-piston radiation). An inverse
problem, in which the velocity profile is estimated in terms of its expansion
coefficients from near-field measurements via Weyl’s formula, is considered
in Sec. 9. Finally, in Sec. 10, the trial functions as used by Streng and Mel-
low, following Bouwkamp’s solution of the diffraction problem for a circular
aperture, are compared with the Z

0,α=±1/2
2l . In [47], Mellow and Kärkkäinen

consider radiation from a disk with concentric rings, and for this an indefinite
integral involving the radial functions R

0,±1/2
2l (ρ) is required. This integral is

computed in closed form.
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4 Fourier transform of generalized Zernike cir-

cle functions

In this section, the 2D Fourier transform of Zm,α
n is computed. It is

convenient to write here

Zm,α
n (ν, μ) ≡ Zm,α

n (ρ, ϑ) , (33)

where ν + iμ = ρ eiϑ with ρ ≥ 0 and 0 ≤ ϑ < 2π.

Theorem 4.1. For α > −1 and integer n, m such that p = 1
2
(n − |m|)

is a non-negative integer, there holds∫ ∫
e2πiνx+2πiμy Zm,α

n (ν, μ) dν dμ =

= 2π in 2α(p+ 1)α
Jn+α+1(2πr)

(2πr)α+1
eimϕ , (34)

where x+ iy = r eiϕ with r ≥ 0 and 0 ≤ ϕ < 2π. Furthermore,

1∫
0

R|m|,α
n (ρ) J|m|(2πρr) ρ dρ = (−1)p 2α(p+ 1)α

Jn+α+1(2πr)

(2πr)α+1
, (35)

and

R|m|,α
n (ρ) = (−1)p 2α(p+ 1)α

∞∫
0

Jn+α+1(t) J|m|(ρt)
tα

dt , 0 ≤ ρ < 1 . (36)

Proof. First consider the case that m ≥ 0. It follows from [14], 11.4.33
(Weber-Schafheitlin integral), with

μ = n+p+1 = m+2p+α+1 , a = 1 , ν = m, b = ρ ∈ [0, 1) , λ = α (37)

that

∞∫
0

Jn+α+1(t) Jm(ρt)

tα
dt =

=
ρm Γ(m+ p+ 1)

2α Γ(m+ 1) Γ(p+ α+ 1)
F (−p− α,m+ p+ 1 ; m+ 1 ; ρ2) .

(38)
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Next from [14], 15.3.3 with

a = m+ 1 + p+ α , b = −p , c = m+ 1 , z = ρ2 (39)

it follows that

F (−p− α,m+ p+ 1 ; m+ 1 ; ρ2) =

= (1− ρ2)α F (−p,m+ 1 + α + p ; m+ 1 ; ρ2) =

= (1− ρ2)α
p!

(m+ 1)p
P (m,α)
p (1− 2ρ2) , (40)

where in the last step [14], 15.4.6 with n = p, α = m, β = α and z = ρ2 has
been used. Therefore, for general integer m, |m| ≤ n,

∞∫
0

Jn+α+1(t) J|m|(ρt)
tα

dt =

=
(−1)p

2α(p+ 1)α
ρ|m|(1− ρ2)α P (α,|m|)

p (2ρ2 − 1) =
(−1)p

2α(p+ 1)α
R|m|,α
n (ρ) ,

(41)

where P
(α,β)
k (−x) = (−1)k P

(β,α)
k (−x) and the definition (26) of R

|m|,α
n (ρ)

have been used. This establishes (36).
Next,

∞∫
0

2π∫
0

e−2πiνx−2πiμy Jn+α+1(2πr)

(2πr)α+1
eimϕ r dr dϕ =

= 2π im
∞∫
0

Jm(−2πrρ)
Jn+α+1(2πr)

(2πr)α+1
r dr eimϑ =

=
(−1)|m|

2π

∞∫
0

J|m|(t) Jn+α+1(t)

tα
dt eimϑ , (42)

where, subsequently, use is made of

νx+ μy = ρ r cos(ϑ− ϕ) , (43)
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1

2π

2π∫
0

e−it cos ϑ eimϑ dϑ = im Jm(−t) = (−i)|m| J|m|(t) , (44)

see [14], Sec. 9.1, and where the substitution t = 2πr has been used in the last
step in (42). Therefore, using (41), the definitions (25)–(26) and n = |m|+2p,
it follows that ∫ ∫

e−2πiμx−2πiμy Jn+α+1(2πr)

(2πr)α+1
r dr dϕ =

=
(−i)n
2π

1

2α(p+ 1)α
Zm,α
n (ρ, ϑ) . (45)

Then (34) follows by 2D Fourier inversion. Now also (35) follows using the
definitions (25)–(26) in (34) and proceeding as in (42)–(44).

Notes.

1. The result in (34) generalizes the case α = 0 in (7) to general α > −1.

2. The result in (35) gives the Hankel transform of order |m| of the radial

part R
|m|,α
n , and (36) is what one gets by inverse Hankel transformation

of order |m|. These two results are reminiscent of, but clearly different
from, the results in (10) and (11) of [48].

3. By the asymptotics of the Bessel functions, see [14], 9.2.1, it is seen that
the Fourier transform of Zm,α

n decays as r−α−3/2 as r → ∞.

5 Radon transform of generalized Zernike cir-

cle functions; integral representation and

DCT-formula for radial parts

In this section, the Radon transform of the generalized circle functions
is expressed in terms of Gegenbauer polynomials. Furthermore, an integral
representation involving these Gegenbauer polynomials for the radial parts
is proved, and a method of the DCT-type for computation of the radial parts
is shown to follow from this integral representation.

The Radon transform of Zm,α
n is given by

(RZm,α
n )(τ, ψ) =

∫

l(τ,ψ)

Zm,α
n (ν, μ) dl =

∫
R|m|,α
n (ρ(t)) eimϑ(t) dt , (46)
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with l(τ, ψ) and ρ, ϑ given in Fig. 1 for τ ≥ 0 and 0 ≤ ψ < 2π. Thus

ρ(t) = (τ 2+t2)1/2 , ϑ(t) = ψ+arctan(t/τ) = ψ+sgn(t) arccos(τ/ρ(t)) . (47)

Substituting ρ = ρ(t), with −∞ < t < ∞ such that τ ≤ ρ(t) < 1 in the

θψ

μ

ν

τ

ρ

(τ,ψ)l

0

P

Q

t

Figure 1: Line of integration l(τ, ψ) and integration point P = Q +
t(− sinψ, cosψ) with −∞ < t < ∞, given in polar coordinates with respect
to 0 as (ρ cosϑ, ρ sinϑ) with ρ = (τ 2 + t2)1/2 and ϑ = ψ + arctan(t/τ).

second integral in (46) and using the second form of ϑ(t) in (47), it follows
that

(RZm,α
n )(τ, ψ) = 2eimψ

1∫
τ

R|m|,α
n (ρ) cos[m arccos(τ/ρ)]

ρ dρ√
ρ2 − τ 2

=

= 2eimψ
1∫
τ

R|m|,α
n (ρ)

Tm(τ/ρ)√
1− (τ/ρ)2

dρ , (48)

where Tm is the Chebyshev polynomial of the first kind and of degree m, see
[14], Ch. 22.
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Theorem 5.1. There holds for α > −1 and integers n, m such that
p = 1

2
(n− |m|) is a non-negative integer that

(RZm,α
n )(τ, ψ) =

(p+ 1)α
(n + 1)2α

22α+1 Γ(α + 1)

n+ 2α + 1
(1− τ 2)α+1/2 Cα+1

n (τ) eimψ (49)

when 0 ≤ τ ≤ 1 and (RZm,α
n )(τ, ψ) = 0 for τ > 1. Here Cα+1

n is the Gegen-
bauer (or ultraspherical) polynomial corresponding to the weight function
(1− x2)α+1/2, −1 < x < 1, and of degree n, see [14], Ch. 22.

Proof. Consider the case that m ≥ 0 (the case that m < 0 is obtained from
this by complex conjugation). By[14], 11.4.24,

∞∫
−∞

e−iωt Jm(t) dt =
2(−i)m Tm(ω)
(1− ω2)1/2

, ω2 < 1 ,

= 0 , ω2 > 1 , (50)

and so, from (48)

(RZm,α
n )(τ, ψ) = eimψ

1∫
0

Rm,α
n (ρ)

⎛
⎝im

∞∫
−∞

e−iτt/ρ Jm(t) dt

⎞
⎠ dρ =

= eimψ im
∞∫

−∞

e−iτs

⎛
⎝

1∫
0

Rm,α
n (ρ) Jm(ρs) ρ dρ

⎞
⎠ ds =

= eimψ in 2α(p+ 1)α

∞∫
−∞

e−iτs
Jn+α+1(s)

sα+1
ds , (51)

where (35) has been used, together with im(−1)p = in.
By [50], 1.12, item (10), there holds for even n (a = 1, 2n instead of n,

ν = α + 1)

2

∞∫
0

cos τs
Jn+α+1(s)

sα+1
ds =

= (−1)
1
2
n 2α+1 n! Γ(α + 1)

Γ(n+ 2α + 2)
(1− τ 2)α+1/2 Cα+1

n (τ) , 0 ≤ τ < 1 ,

(52)
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while the integral in (52) equals 0 when τ > 1. By [50], 2.12, item (10), there
holds for odd n (a = 1, 2n+ 1 instead of n, ν = α + 1)

−2i

∞∫
0

sin τs
Jn+α+1(s)

sα+1
ds =

= −i(−1)
n−1
2

2α+1 n! Γ(α + 1)

Γ(n+ 2α + 2)
(1− τ 2)α+1/2Cα+1

n (τ) , 0 ≤ τ < 1 ,

(53)

while the integral in (53) equals 0 when τ > 1. Using (52) and (53) in (51),

it follows upon some administration with in and (−1)
1
2
n, (−1)

1
2
(n−1) that for

0 ≤ τ < 1

(RZm,α
n )(τ, ψ) = (p+1)α

22α+1 n! Γ(α + 1)

Γ(n+ 2α+ 2)
(1−τ 2)α+1/2Cα+1

n (τ) eimψ , (54)

while (RZm,α
n )(τ, ψ) = 0 when τ > 1. The result follows now upon some

further administration with Pochhammer symbols.

Theorem 5.2. There holds for α > −1 and integer n and m such that
n− |m| is even and non-negative

(
q + α
q

)
(1− ρ2)−αR|m|,α

n (ρ) =
1

2π

2π∫
0

Cα+1
n (ρ cosϑ) e−imϑ dϑ , (55)

where p = 1
2
(n− |m|), q = 1

2
(n+ |m|).

Proof. There holds, taking |ν| = τ and ψ = 0 or π according as ν ≥ 0 or
ν < 0 in (49), with separate consideration of even m and odd m in the case
ν < 0, √

1−ν2∫

−√
1−ν2

Zm,α
n (ν, μ) dμ = Knm(1− ν2)α+1/2 Cα+1

n (ν) , (56)

where

Knm =
(p+ 1)α
(n+ 1)2α

22α+1 Γ(α + 1)

n+ 2α + 1
. (57)

Expand

Cα+1
n (ν) =

∑
n′,m′

βmm
′

nn′ (1− ρ2)−α Zm′,α
n′ (ν, μ) (58)
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as a function depending only on ν with ν2 + μ2 ≤ 1. By orthogonality, see
(31), there holds

βmm
′

nn′ = L−1
n′m′

∫ ∫

ν2+μ2≤1

Cα+1
n (ν)Zm′,α

n′ (ν, μ) dν dμ , (59)

where

Ln′m′ =
π

n′ + α + 1

(p′ + 1)α
(p′ + |m′|+ 1)α

. (60)

Using (56), it is seen that

βmm
′

nn′ = L−1
n′m′

1∫
−1

Cα+1
n (ν)

⎛
⎜⎝

√
1−ν2∫

−√
1−ν2

Zm′,α
n′ (ν, μ) dμ

⎞
⎟⎠ dν =

= L−1
n′m′ Kn′m′

1∫
−1

(1− ν2)α+1/2 Cα+1
n (ν)Cα+1

n′ (ν) dν =

= L−1
n′m′ Kn′m′ Mn δnn′ , (61)

where Mn follows from orthogonality of the Cα+1 as, see [16], (7.8),

Mn =
π · 2−2α−1 · Γ(n+ 2α + 2)

n! (n+ α + 1) Γ2(α + 1)
. (62)

With ν = ρ cosϑ it then follows that

Cα+1
n (ρ cosϑ) =

∑
m′

βmm
′

nn (1− ρ2)−αZm′,α
n (ρ, ϑ) =

=
∑
m′

βmm
′

nn ρ|m
′| P (α,|m′|)

n−|m′|
2

(2ρ2 − 1) eimϑ . (63)

Therefore, see (26),

βmm
′

nn′ ρ|m
′| P (α,|m′|)

n−|m′|
2

(2ρ2 − 1) =
1

2π

2π∫
0

Cα+1
n (ρ cosϑ) e−im

′ϑ dϑ (64)
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for integer m′ such that p′′ := 1
2
(n − |m′|) is a non-negative integer. An

explicit computation from (57), (60), (61) yields now

βmm
′

nn = L−1
nm′ Knm′ Mn =

=
( π

n + α + 1

(p′′ + 1)α
(p′′ + |m′|+ 1)α

)−1

· (p
′′ + 1)α

(n + 1)2α

22α+1 Γ(α+ 1)

n + 2α+ 1
·

· π · 2−2α−1 Γ(n+ 2α + 2)

n! (n+ α + 1) Γ2(α + 1)
=

=
(p′′ + |m′|+ 1)α

Γ(α + 1)
=

Γ(q′′ + α + 1)

Γ(q′′ + 1) Γ(α+ 1)
=

(
q′′ + α
q

)
, (65)

in which q′′ = p′′ + |m′| = 1
2
(n + |m′|). Now replace m′ by m in (64) and

(65), and (55) results.

Notes.

1. Theorem 5.1 generalizes the case α = 0 in (14) to general α > −1.
A further generalization, to orthogonal functions on spheres of general
dimension N instead of disks, is provided in [51], Theorem 3.1. The
proof of Theorem 5.1 as given here follows rather closely the approach of
Cormack in [38]–[39] which differs from the approach used in [51].

2. Theorem 5.2 generalizes the case α = 0 of the integral representation of
the R

|m|
n in [40], (A.10) to the case of general α > −1. Furthermore, for

a fixed ρ ∈ (0, 1), the formula (55) can be discretized to

(
q + α
q

)
(1− ρ2)−αR|m|,α

n (ρ) =
1

N

N∑
k=0

Cα+1
n

(
ρ cos

2πk

N

)
e−2πi k

N (66)

when N is an integer > n+ |m|. This yields a method of the DFT-type
to compute the radial parts fast and reliably.

3. The integral representation in (55) is an excellent starting point to derive
the asymptotics of the radial parts, by stationary phase methods, etc.,
when n, |m| → ∞ such that n/|m| → κ ∈ (0, 1), with α fixed and ρ
bounded away from 0 and 1. See [52], ENZ document, Sec. 7, item 4.

6 Scaling theory for generalized Zernike cir-

cle functions
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Scaling theory for generalized Zernike circle functions is compromised by
the occurrence of the factor (1− ρ2)α. In the first place, one has to restrict
the scaling parameter ε in Zm,α

n (ερ, ϑ) to the range 0 ≤ ε < 1. While this
restriction is quite natural, the scaling results, such as (17), for the case that
α = 0 allows unrestricted values of ε due to polynomial form of the radial
parts. Furthermore, the value of Zm,α

n (ερ, ϑ) at ρ = 1 (with 0 ≤ ε < 1) is in
general finite and unequal to 0. This implies that the only natural candidate
among the systems (Zm′,α′

n′ (ρ, ϑ))n′,m′ as expansion set for Zm,α
n (ερ, ϑ) is the

case that α′ = 0. Finally, an extension to shift-and-scaling theory, as in [41],
seems also more cumbersome. Nevertheless, for the radial part there is the
following result.

Theorem 6.1. Let α > −1, 0 ≤ ε < 1, and let n, m be non-negative
integers such that p = 1

2
(n−m) is a non-negative integer. Then

Rm,α
n (ερ) =

∑
n′=m,m+2,...

Cm,α
nn′ (ε)R

m
n′(ρ) , 0 ≤ ρ < 1 , (67)

in which the C’s can be expressed as the sum of two hypergeometric functions

2F1. Furthermore,

Cm,α
nn′ (ε) =

(p+ 1)α
(p′ + 1)α

(
Rn′,α
n (ε)− p′ + α

p′
Rn′+2,α
n (ε)

)
,

n′ = m,m+ 2, ..., n− 2 , (68)

where p′ = 1
2
(n−n′). Finally, when α is a non-negative integer, it holds that

Cm,α
nn′ (ε) = 0 , n′ = n + 2α+ 2, n+ 2α + 4, ... . (69)

Proof. By the orthogonality condition (31) for the case α = 0, there holds
for n′ = m,m+ 2, ...

Cm,α
nn′ (ε) = 2(n′ + 1)

1∫
0

Rm,α
n (ερ)Rm

n′(ρ) ρ dρ . (70)
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Now, by (36) and, subsequently (35) with α = 0, 2πr = εt,

1∫
0

Rm,α
n (ερ)Rm

n′(ρ) ρ dρ =

= (−1)p 2α(p+ 1)α

1∫
0

⎛
⎝

∞∫
0

Jn+α+1(t) Jm(ερt)

tα
dt

⎞
⎠ Rm

n′(ρ) ρ dρ =

= (−1)p 2α(p+ 1)α

∞∫
0

Jn+α+1(t)

tα

⎛
⎝

1∫
0

Rm
n′(ρ) Jm(ερt) ρ dρ

⎞
⎠ dt =

= (−1)p 2α(p+ 1)α(−1)(n
′−m)/2

∞∫
0

Jn+α+1(t) Jn′+1(εt)

tα · εt dt . (71)

Using [14], first item in 9.1.27,

Jn′+1(z)

z
=

1

2(n′ + 1)
(Jn′(z) + Jn′+2(z)) , (72)

it is then found that

Cm,α
nn′ (ε) = (−1)(n+n

′−2m)/2 2α(p+ 1)α(Inn′(α, ε) + In,n′+2(α, ε)) , (73)

where

Inn′′(α, ε) =

∞∫
0

Jn+α+1(t) Jn′′(εt)

tα
dt . (74)

Now, for n′′ = m,m+ 2, ..., n , there holds by (35)

Inn′′(α, ε) =
(−1)p

′′

2α(p′′ + 1)α
Rn′′,α
n (ε) , (75)

where p′′ = 1
2
(n− n′′). For n′′ = n + 2, n+ 4, ... , there holds by (38)

Inn′′(α, ε) =
εm Γ(n′′ + p′′ + 1)

2α Γ(n′′ + 1) Γ(p′′ + α + 1)
F (−p′′ −α, n′′ + p′′ +1 ; n′′ +1 ; ε2) ,

(76)
where again p′′ = 1

2
(n−n′′). When α is a non-negative integer, (76) vanishes

when p′′ + α is a negative integer, i.e., when

n′′ = n + 2α+ 2, n+ 2α + 4, ... . (77)
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When α is not an integer, infinitely many of the Inn′′ must be expected to
be non-vanishing.

From (73) and (75)it is found for n′ = m,m+ 2, ..., n− 2 that

Cm,α
nn′ = (−1)(n+n

′−2m)/2 2α(p+ 1)α ·

·

⎡
⎢⎣ (−1)(n−n

′)/2

2α
(n− n′

2
+ 1

)
α

Rn′,α
n (ε) +

(−1)(n−n
′−2)/2

2α
(n− n′

2

)
α

Rn′+2,α
n (ε)

⎤
⎥⎦ =

=
(p+ 1)α
(p′ + 1)α

(
Rn′,α
n (ε)− p′ + α

p′
Rn′+2,α
n (ε)

)
, (78)

where p′ = 1
2
(n− n′) and the proof is complete.

7 Forward computation schemes for general-

ized Zernike circle polynomials from ordi-

nary ENZ and ANZ

In this section, the generalized Zernike circle functions Zm,α
n are expanded

with respect to the system (Zm′
n′ )m′,n′ of classical circle polynomials. The az-

imuthal dependence is in all cases through the factor exp(imϑ), and this
allows restriction of the attention to the radial parts only.

Theorem 7.1. Let α > −1 and let n, m be non-negative integers such
that p = 1

2
(n−m) is a non-negative integer. Then

Rm,α
n (ρ) =

∞∑
k=0

Ck R
m
m+2k(ρ) , 0 ≤ ρ < 1 , (79)

where Ck = 0 for k = 0, 1, ..., p− 1 and

Ck = (−1)k−p
m+ 2k + 1

m+ k + p+ α + 1

(
m+ p+ k

p

)(
α

k − p

)
/

/
(m+ k + p+ α

m+ k

)
=

=
m+ 2k + 1

m+ k + p+ α+ 1

(−α)k−p
(k − p)!

(p+ 1)α
(m+ k + p+ 1)α

(80)
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when k = p, p+ 1, ... .

Proof. By the orthogonality condition (31) with α = 0, there holds

Ck = 2(m+ 2k + 1)

1∫
0

Rm,α
n (ρ)Rm

m+2k(ρ) ρ dρ . (81)

Using the definition (26) of Rm,α
n=m+2p and R

m
m+2k, and using in the integral in

(81) the substitution

x = 2ρ2−1 ∈ [−1, 1] , ρ2 = 1
2
(1+x) , 1−ρ2 = 1

2
(1−x) , ρ dρ = 1

4
dx , (82)

this becomes

Ck =

= 2(m+ 2k + 1)

1∫
0

ρ2m(1− ρ2)α P (α,m)
p (2ρ2 − 1)P

(0,m)
k (2ρ2 − 1) ρ dρ =

=
m+ 2k + 1

2m+α+1

1∫
−1

(1− x)α (1 + x)m P (α,m)
p (x)P

(0,m)
k (x) dx . (83)

By Rodriguez’ formula, see [15], (4.3.1) or [16], p. 161, there holds

(1− x)α (1 + x)m P (α,m)
p (x) =

(−1)p

2p p!

( d

dx

)p
[(1− x)α+p(1 + x)m+p] . (84)

Then, by p partial integrations from (83) and (84),

Ck =
m+ 2k + 1

2m+p+α+1 p!

1∫
−1

(1− x)p+α(1 + x)p+m
( d

dx

)p
P

(0,m)
k (x) dx . (85)

Next, by using, see [15], (4.2.17) or [16], (4.14),

d

dx
P (α,β)
n (x) = 1

2
(n + α + β + 1)P

(α+1,β+1)
n−1 (x) (86)

repeatedly, it is found that for k ≥ p

( d

dx

)p
P

(0,m)
k (x) =

1

2p
(k +m+ p)!

(k +m)!
P

(p,m+p)
k−p (x) , (87)
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while this vanishes for k < p. Hence, Ck = 0 for k < p and for k ≥ p it is
found that

Ck =
m+ 2k + 1

2m+2p+α+1

(k +m+ p)!

(k +m)! p!

1∫
−1

(1−x)p+α(1+x)p+m P (p,m−p)
k−p (x) dx . (88)

Next, again by Rodriguez’ formula,

(1− x)p(1+ x)m+p P
(p,m+p)
k−p (x) =

(−1)k−p

2k−p(k − p)!

( d

dx

)k−p
[(1− x)k(1+ x)k+m] .

(89)
Thus, it is found from (88) and (89) by k − p partial integrations that

Ck =
m+ 2k + 1

2m+k+p+α+1

(k +m+ p)! (−1)k−p

(k +m)! p! (k − p)!
·

·
1∫

−1

(1− x)α
( d

dx

)k−p
[(1− x)k(1 + x)k+m] dx =

=
m+ 2k + 1

2m+k+p+α+1

(k +m+ p)! (−1)k−p

(k +m)! p! (k − p)!
· Γ(α+ 1)

Γ(α− k + p+ 1)
·

·
1∫

−1

(1− x)α+p(1 + x)k+m dx . (90)

The remaining integral in (90) can be evaluated in terms of Γ-functions as

1∫
−1

(1− x)α+p(1 + x)k+m dx = 2m+k+p+α+1 Γ(k +m+ 1) Γ(p+ α + 1)

Γ(k +m+ p+ α + 1)
. (91)

The final result in (80) then follows upon some further administration with
binomials and Pochhammer symbols.

Notes.
1. When α is a non-negative integer, Ck vanishes for k ≥ p+ α.

2. For the case that m = n = 0, so that p = 0, the expansion of (1− ρ2)α is
obtained, with expansion coefficients

Ck = (−1)k
2k + 1

k + 1

(
α
k

)
/
(
k + α + 1

α

)
, (92)

compare [19], (10).
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3. A short-cut of the proof of Theorem 7.1 can be obtained by noting that
the integral on the last line of (83) is essentially equal to the expansion
coefficient Dp in the connection formula

P
(0,m)
k (x) =

k∑
p=0

Dp P
(α,m)
p (x) . (93)

These connection coefficients are given in [53], Theorem 7.1.3 in terms of
Pochhammer symbols. The proof of Theorem 7.1 as given here is “self-
contained”, in the sense that only basic properties of Jacobi polynomials
are used, while the proof of [53], Theorem 7.1.3 uses also some more
advanced properties of the hypergeometric function 3F2.

The result of Theorem 7.1 gives a means to transfer forward computation
schemes from the ordinary ENZ or ANZ theory to the general setting. Below
is an example of this.

Theorem 7.2. Let α > −1, and let n, m be non-negative integers such
that n −m is even and non-negative. Then the through-focus point-spread
function Um,α

n (r, ϕ ; f) corresponding to Zm,α
n (ρ, ϑ), see (6), is given by

Um,α
n (r, ϕ ; f) = 2π im eimϕ

∞∑
k=0

Ck V
m
m+2k(r, f) (94)

with V m
m+2k given in semi-analytic form in (12) and Ck given in (80).

Proof. Just insert the expansion (79) into the integral

1∫
0

2π∫
0

eifρ
2

e2πiρr cos(ϑ−ϕ) Zm,α
n (ρ, ϑ) ρ dρ dϑ (95)

for Um,α
n and use (11).

Notes.

1. In a similar fashion, the on-axis pressure p0,α2i ((0, 0, z), k) due to the ra-
dially symmetric velocity profile v(σ) = Z0,α

2i (σ/a, ϑ), see (18), can be
obtained from the on-axis pressures p2j((0, 0, z), k) due to Z0

2j(σ/a, 0),
given in (20), and the coefficients Cj , case m = 0, in (80).

2. The availability of the through-focus point-spread functions Um,α
n per The-

orem 7.2 makes it possible to do aberration retrieval, with pupil functions
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expanded in generalized circle functions, in the same spirit as this is done
in the ordinary ENZ theory, see Sec. 2. Similarly, radially symmetric ve-
locity profiles, expanded into radially symmetric generalized circle func-
tions, can be retrieved with the same approach that is used in the ordinary
ANZ theory, see [19], Sec. V.

8 Acoustic quantities for baffled-piston radi-

ation from King’s integral with generalized

circle functions as velocity profiles

In this section various acoustic quantities that arise from baffled-piston
radiation with a velocity profile that is expanded into generalized Zernike
circle functions are computed in semi-analytic form. The starting point is
King’s integral, second integral expression in (18), in which V (u) is the Han-
kel transform (19) of order 0 of v(σ). Having expanded v(σ) in radially
symmetric circle functions Z0,α

2j = R0,α
2j , the Hankel transforms

V 0,α
2j (u) =

a∫
0

R0,α
2j (σ/a) J0(uσ) σ dσ =

= (−1)j a2 2α(j + 1)α
J2j+α+1(au)

(au)α+1
, j = 0, 1, ... , (96)

see (35) arise.
The acoustic quantities considered are

– pressure p((a, 0, 0) ; k) at edge of the radiator,

– reaction force F =
∫
S

p dS on the radiator,

– the power output P =
∫
S

p v∗ dS of the radiator.

By taking z = 0, w = a in King’s integral, it is seen that

pedge = p((a, 0, 0) ; k) = iρ0ck

∞∫
0

J0(au) V (u)

(u2 − k2)1/2
u du . (97)

It was shown in [20], Sec. III from the integral result

a∫
0

J0(σu) σ dσ = au−1J1(au) (98)
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by taking z = 0 in King’s integral and integrating over w, 0 ≤ w < a that

F =

∫

S

p dS = 2πiρ0cka

∞∫
0

J1(au) V (u)

(u2 − k2)1/2
du . (99)

It was shown in [20], Sec. IV, from the representation

p((σ, 0, 0), k) = iρ0ck

∞∫
0

V (u)

(u2 − k2)1/2
J0(σu) u du , 0 ≤ σ <∞ , (100)

as a Hankel transform and by using Parseval’s formula for Hankel transforms
that

P =

∫

S

p v∗ dS = 2πiρ0ck

∞∫
0

V (u) V ∗(u)
(u2 − k2)1/2

u du . (101)

By inserting V = V 0,α
2j into the integrals in (97), (99), (101), it is seen

that the integrals

i

∞∫
0

Jm+β(au) Jn+γ+1(au)

(u2 − k2)1/2 uβ+γ
du (102)

arise. Explicitly, in (102) take
– m = 0, β = 0, n = 2j, γ = α for (97),
– m = 0, β = 1, n = 2j, γ = α for (99),
– m = 2j1, β = α + 1, n = 2j2, γ = α with j1 ≤ j2 for (101).
These integrals will now be evaluated as a power series in ka using the method
of [20], Appendix A.

Theorem 8.1. Let β ≥ 0, γ > −1 and let n, m be non-negative inte-
gers such that n−m is non-negative and even. Then

i

∞∫
0

Jm+β(au) Jn+γ+1(au)

(u2 − k2)1/2 uβ+γ
du =

=
−(−1)p a2ε

2ka

∞∑
l=1

(1
2
l + 1

2
)ε

(1
2
l + ε)δ

(− 1
2
l + 1− β)p(−1

2
l + 1)q(−ika)l

Γ(1
2
l + p+ γ + 1) Γ(1

2
l + q + 2ε+ 1)

,

(103)

where

ε = 1
2
(β + γ) , δ = 1

2
(β − γ) , p = 1

2
(n−m) , q = 1

2
(n+m) . (104)
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Proof. The plan of the proof is entirely the same as that of the proofs of the
results in [20], Appendix A, and so only the main steps with key intermediate
results are given.

With (u2 − k2)1/2 as defined below (18) there holds

i

∞∫
0

Jm+β(au) Jn+γ+1(au)

(u2 − k2)1/2 uβ+γ
du =

=

k∫
0

Jm+β(au) Jn+γ+1(au)

uβ+γ
√
k2 − u2

du+ i

∞∫

k

Jm+β(au) Jn+γ+1(au)

uβ+γ
√
u2 − k2

du =

= I1 + I2 . (105)

As to the integral I1 in (105), the product of the two Bessel functions is
written as an integral, see [54], beginning of §13.61, and [20], (A8), from
−∞i to ∞i, the order of integration is reversed and it is used that

k∫
0

u2q+2s+1

√
k2 − u2

du = k2q+2s+1 Γ(q + 1 + s) Γ(1
2
)

Γ(q + 3
2
+ s)

(106)

to obtain

I1 =
1
2
Γ(1

2
)

2πi
(1
2
a)2ε (1

2
ka)2q ·

·
∞i∫

−∞i

Γ(−s) Γ(2q + 2ε+ 2s+ 2) Γ(q + 1 + s)(1
2
ka)2s+1

Γ(m+ β + s+ 1) Γ(n+ γ + s + 2) Γ(2q + 2ε+ s+ 2) Γ(q + s+ 3
2
)
ds .

(107)

The choice of the integration contour is such that it has all poles of Γ(−s) on
its right and all poles of Γ(2q + 2ε+ 2s+ 2) on its left (this is possible since
q ≥ 0 and β + γ > −2). Closing the contour to the right, thereby enclosing
all poles of Γ(−s) at s = j = 0, 1, ... with residues (−1)j+1/j!, and using the
duplication formula of the Γ-function to write

Γ(2q + 2ε+ 2j + 2) =
22q+2ε+2j+1

Γ(1
2
)

Γ(q + ε+ j + 1) Γ(q + ε+ j + 3
2
) , (108)
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it follows that

I1 = 1
2
a2ε

∞∑
j=0

(−1)j
Γ(q + j + 1)

j!

Γ(q + ε+ j + 3
2
)

Γ(q + j + 3
2
)

Γ(q + ε+ j)

Γ(m+ β + j + 1)
·

· (ka)2(q+j)+1

Γ(n+ γ + j + 2) Γ(2q + 2ε+ j + 2)
. (109)

Replacing j+q+1 by j = q+1, q+2, ... , it is found after some administration
with Pochhammer symbols (such as (x− q)q = (−1)q(1− x)q) that

I1 =
−(−1)p a2ε

2ka

∞∑
j=q+1

(j + 1
2
)ε

(j + ε)δ

(−j + 1)q(−j + 1− β)p(−ika)2j
Γ(j + p+ γ + 1) Γ(j + q + 2ε+ 1)

. (110)

Here it may be observed that (−j + 1)q = 0 for j = 1, ..., q , so that the
summation in (110) could start at j = 1 as well.

As to the integral I2 in (105), again the integral representation for the
product of two Bessel functions is used, the integration order is reversed, and
it is used that

∞∫

k

u2q+2s+1

√
u2 − k2

du = 1
2
k2q+2s+1 Γ(

1
2
) Γ(−q − s− 1

2
)

Γ(−q − s)
. (111)

This yields

I2 =
1
2
iΓ(1

2
)(1

2
a)2ε ·

·
∞i∫

−∞i

Γ(−s)
Γ(−q − s)

Γ(2q + 2ε+ 2s+ 2) Γ(−q − s− 1
2
)(1

2
ka)2s+2q+1

Γ(m+ β + s+ 1) Γ(n+ γ + s+ 2) Γ(2q + 2ε+ s+ 2)
ds .

(112)

The factor Γ(−s)/Γ(−q − s) is a polynomial since q = 0, 1, ... , and so the
integrand has its poles at s = j−q− 1

2
, j = 0, 1, ... , and at s = −r−q−ε−1,

r = 0, 1, ... . Since ε = (β+γ)/2 > −1, the integration contour can be chosen
such that all poles j − q − 1

2
, with residues (−1)j+1/j!, lie to the right of it

while all poles −r− q − ε− 1 lie to the left of it. Closing the contour to the
right, and using the duplication formula again, to write

Γ(2j + 2ε+ 1) =
22j+2ε

Γ(1
2
)
Γ(j + ε+ 1

2
) Γ(j + ε+ 1) , (113)
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it follows that

I2 = 1
2
i a2ε

∞∑
j=0

(−1)j
Γ(j + 1 + ε)

Γ(j + 1)

Γ(−j + 1
2
+ q)

Γ(−j + 1
2
)

Γ(j + ε+ 1
2
)

Γ(j + β + 1
2
− p)

·

· (ka)2j

Γ(j + γ + 3
2
+ p) Γ(j + 2ε+ 3

2
+ q)

. (114)

Then some administration with Pochhammer symbols (such as Γ(x)/Γ(x −
p) = (−1)p(1− x)p) yields

I2 =
−(−1)p a2ε

2ka

∞∑
j=0

(j + 1)ε
(j + ε+ 1

2
)δ

(−j + 1
2
)q(−j − β + 1

2
)p(−ika)2j+1

Γ(j + p+ γ + 3
2
) Γ(j + q + 2ε+ 3

2
)
.

(115)
The result in (103) is now obtained by adding I1 in (110), with summation

starting at j = 1, and I2 in (115), while observing that the terms j in (110)
yield the terms in (103) with even l = 2j, j = 1, 2, ... , and that the terms j
in (115) yield the terms in (103) with odd l = 2j + 1, j = 0, 1, ... .

9 Estimating generalized velocity profiles in

baffled-piston radiation from near-field pres-

sure data via Weyl’s formula

In this section a brief sketch is given of how one can estimate, in the set-
ting of baffled-piston radiation, a not necessarily radially symmetric velocity
profile from near-field pressure data. The starting point is the Rayleigh in-
tegral for the pressure, first integral expression in (18), that is written in
normalized form as

p(ν, μ ; ζ) =

∫

S

∫
v(ν ′, μ′)

eikar
′

r′
dν ′ dμ′ , (116)

where
r′ = ((ν − ν ′)2 + (μ− μ′)2 + ζ2)1/2 (117)

is the distance from the field point (ν, μ, ζ), with ζ ≥ 0, to the point (ν ′, μ′, 0)
on the radiating surface S, for which we take the unit disk. For a fixed value
of ζ > 0, the equation (116) can be written as

p(ν, μ ; ζ) = (v ∗∗W (·, · ; ζ))(ν, μ) , (118)
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where ∗∗ denotes 2D convolution and

W (ν, μ ; ζ) =
exp[ika(ζ2 + ν2 + μ2)1/2]

(ζ2 + ν2 + μ2)1/2
. (119)

Using the Fourier transform F , defined as

(Fq)(x, y) =
∞∫

−∞

∞∫
−∞

e2πiνx+2πiμy q(ν, μ) dν dμ , x, y ∈ R , (120)

the formula (118) can be written as

F [p(·, · ; ζ)] = Fv · F [W (·, · ; ζ)] . (121)

By Weyl’s result on the representation of spherical waves, see [18], Sec. 13.2.1,
there holds

F [W (·, · ; ζ)](x, y) = 2πi
exp [iζ((ka)2 − (2πx)2 − (2πy)2)1/2]

((ka)2 − (2πx)2 − (2πy)2)1/2
, (122)

with the same definition of the square root as the one that was used in
connection with King’s integral in (18).

Now assume that the unknown velocity profile vanishes outside the unit
disk and that it has a (1− ν2 − μ2)α-behaviour at the edge of the unit disk,
where α > −1. Then v has an expansion

v(ν, μ) =
∑
n,m

Cm,α
n Zm,α

n (ν, μ) (123)

in generalized Zernike circle functions, with Fourier transform

Fv =
∑
n,m

Cm,α
n F Zm,α

n , (124)

in which F Zm,α
n is given explicitly in Sec. 4. Thus, when the pressure p is

measured in the near-field plane (ν, μ ; ζ) with ζ fixed, one can estimate v on
the level of its expansion coefficients Cm,α

n by adopting a matching approach
in (121), using Weyl’s result in (122) and the result of Sec. 4 in (124).
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10 Comparison with trial functions as used in

acoustic design byMellow and Kärkkäinen

Mellow and Kärkkäinen are concerned with design problems in acoustic
radiation from a resilient disk (radius a) in an infinite or finite baffle (z = 0),
see [46]–[47]. The front and rear pressure distributions p+ and p−, p− = −p+,
are assumed to be radially symmetric and to have the form

∞∑
l=0

al(1− (σ/a)2)l+1/2 (125)

on the disk in accordance with the choice of trial functions used by Streng
[43] which is based on the work of Bouwkamp [44]. In the case that the
normal gradient of the pressure at z = 0 is considered, as is done by Mellow
in [45], an expansion of the form

∞∑
l=0

bl(1− (σ/a)2)l−1/2 (126)

on the disk has to be considered.
In the design problem considered in [46]–[47], the coefficients al in (125)

are to be found such that the pressure gradient ∂p
∂z

(w, z = 0+) equals a
desired function Φ(w) of the distance w of a point in the baffle plane to the
origin. In the design problem considered in [45], the coefficients bl in (126)
are to be found such that p(w, z = 0+) equals a desired function Ψ(w).

The pressure p(w, z), z ≥ 0 can be expressed in terms of the boundary
data p+, p− via the dipole version of King’s integral. Similarly, via the com-
mon version of King’s integral, the pressure p(w, z), z ≥ 0, can be expressed
in terms of the normal gradient ∂p

∂z
(w, 0) of p at z = 0. Inserting the series

expansion (125) and (126) into the appropriate version of King’s integral, the
integrals

∞∫
0

( 1

μ

)l±1/2

J0(wμ) Jl±1/2+1(aμ) σ
±1 dμ (127)

arise where σ = −i(μ2 − k2)1/2 and where the ± follows the sign choice in
the exponent l ± 1/2 of (1 − (σ/a)2) in (125) and (126). To obtain (127),
an explicit result, due to Sonine, for the Hankel transform of order 0 of
the functions (1 − (σ/a)2)l±1/2 has been used. The integrals in (127) are
evaluated in the form of a double power series in ka and w/a in [45]–[47].
Thus, having the pressure available in this semi-analytic form, comprising
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the coefficients al or bl, one can evaluate ∂p
∂z

(w, z = 0+) and p(w, z = 0+)
and find the coefficients by requiring a best match with the desired function
Φ(w) or Ψ(w).

In the approach of the present paper, the starting point would be an
expansion of the form

∞∑
l=0

clR
0,±1/2
2l (σ/a) (128)

of the pressure (+-sign) or pressure gradient (−-sign) on the disk. Following
the approach in [45]–[47], using either form of King’s integral, this gives rise
to the integrals

∞∫
0

(1
μ

)±1/2

J0(wμ) J2l±1/2+1(aμ) σ
±1 dμ , (129)

where now the result of Sec. 4 on the Hankel transform of R
0,±1/2
2l has been

used. The integral in (129) is of the same type as the one in (127) and can
be evaluated by the method given in [45]–[47].

10.1 Numerical considerations

In either approach, it is required to find coefficients such that a best
match occurs between the semi-analytically computed pressure gradient or
pressure at z = 0+, comprising the coefficients, and the desired functions Φ
or Ψ. For any L = 1, 2, ... , the linear span of the function systems

{(1− (σ/a)2)l±1/2 | l = 0, 1, ..., L− 1} (130)

and
{R0,±1/2

2l (σ/a) | l = 0, 1, ..., L− 1} (131)

is the same. So matching using the first L functions in (125), (126) yields the
same result for the best matching pressure gradient or pressure at z = 0+ as
matching using the first L functions in (128), in theory. For small values of L,
one finds numerically practically the same result when either system in (130),
(131) is used. In the case that large values L of the number of coefficients
to be matched are required, the approach based on (125), (126) is expected
to experience numerical problems while the one based on (129) is likely not
to have such problems. This is due to the fact that the functions in (130)
are nearly linearly dependent while the ones in (131), due to orthogonality,
are not, and this is expected to remain so after the linear transformation
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associated with either version of King’s integral. Furthermore, it is to be
expected that the semi-analytic forms, used in the matching procedure, that
arise from any of the terms (1− (σ/a)2)l±1/2 must be used with much higher

truncation levels than those that arise from the terms R
0,±1/2
2l (σ/a).

All this can be illustrated by comparing the expansion coefficients of
a (1 − (σ/a)2)k±1/2 with respect to the system in (131) with those of an

R
0,±1/2
2p (σ/a) with respect to the system in (130). There is the following gen-

eral result.

Theorem 10.1. For m = 0, 1, ... , α > −1 and k, p = 0, 1, ... there holds

ρm(1− ρ2)k+α eimϑ =

k∑
l=0

Dm,α
m+2l,k Z

m,α
m+2l(ρ, ϑ) , (132)

Zm,α
m+2p(ρ, ϑ) =

p∑
r=0

Em,α
r,m+2p ρ

m(1− ρ2)r+α eimα , (133)

where

Dm,α
m+2l,k =

(α + 1)k
(m+ α + 1)k

m+ 2l + α + 1

m+ k + l + α + 1

(−k)l(m+ α + 1)l
(α + 1)l(m+ k + α + 1)l

,

(134)

Em,α
r,m+2p =

(α + 1)p
(1)p

(−p)r(m+ p + α+ 1)r
(α + 1)r(1)r

. (135)

Proof. The proof of (132), (134) is quite similar to the one of Theorem 7.1,
and so only the main steps and key intermediate results are given. By or-
thogonality, see (31), and the substitution in (82), there holds

Dm,α
m+2l,k =

m+ 2l + α + 1

2m+k+α+1

(l +m+ 1)α
(l + 1)α

1∫
−1

(1− x)k+α(1 + x)m P
(α,m)
l (x) dx .

(136)
Next, Rodriguez’ formula, (see (84)), is used, and l partial integrations are
performed. There results for k ≥ l

1

2m+k+α+1

1∫
−1

(1− x)k+α(1 + x)m P
(α,m)
l (x) dx =

=
(−1)l

2m+k+l+α+1

Γ(k + l)

l! Γ(k + 1− l)

1∫
−1

(1− x)k+β(1 + x)l+m dx , (137)
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while this vanishes for k < l. The remaining integral can be expressed
in terms of Γ-functions as in (91), and then the result follows upon some
administration with Pochhammer symbols.

From the definition of Zm,α
m+1p, one should find the E’s according to

P (α,m)
p (2ρ2 − 1) =

∑
r

Em,β
r,m+2p(1− ρ2)r . (138)

By [14], 15.4.6, it holds that

P (α,m)
p (2ρ2 − 1) = P (α,m)

p (1− 2(1− ρ2)) =

=
(α + 1)p

p!
F (−p, α+ 1 +m+ p ; α + 1 ; 1− ρ2) ,

(139)

and then the E’s follow from the definition of F in [14], 15.1.1.

Example. For the case m = 0, it is found that the ratio of the rth co-
efficient for (1− ρ2)p+α and the rth coefficient for Z0,α

m+2p(ρ, ϑ) satisfy

D0,α
2r,p

E0,α
r,2p

=
(1)p

(α + 1)p

2r + α + 1

p+ r + α+ 1

(1)r(α + 1)r
((p+ α+ 1)r)2

, (140)

showing that the E’s are much larger than the D’s. Note also that (1−ρ2)p+α
and Z0,α

m+2p(ρ, ϑ) have the same L2-norm, where the weight function (1−ρ2)−α
on the unit disk is used.

10.2 Indefinite integrals for multi-ring design

In [47], Mellow and Kärkkäinen replace the disk by a ring, and in [47],
Subsec. II.F, the total radiation force is expressed as an integral over this
ring of p+ − p−. This integral can be expressed explicitly in terms of the al
in (125) since the functions (1− (σ/a)2)l+1/2 have an analytic result for their

integrals over a concentric ring. In the case that expansions involving R
0,±1/2
2l

are used, non-trivial integrals arise.
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Theorem 10.2. There holds for l = 0, 1, ...

∫
R

0,−1/2
2l (ρ) ρ dρ =

−1

4l + 1
(R

0,1/2
2l (ρ) +R

0,1/2
2l−2 (ρ)) , (141)

∫
R

0,1/2
2l (ρ) ρ dρ =

1

4l + 1

[2l + 2

4l + 5
R

0,1/2
2l+2 (ρ) +

− 4l + 3

(4l + 5)(4l + 1)
R

0,1/2
2l (ρ)− 2l + 1

4l + 1
R

0,1/2
2l−2 (ρ)

]
,

(142)

where R
0,1/2
−2 (ρ) ≡ 0 has been set for the case l = 0.

Proof. There holds by [15], α = 0 in the first item in (4.1.5),

P2l(x) = (−1)lP
(−1/2,0)
l (1− 2x2) , (143)

where P2l denotes the Legendre polynomial of degree 2l. Using this with
x = (1− ρ2)1/2, it is seen that

R
0,−1/2
2l (ρ) = (1− ρ2)−1/2 P

(−1/2,0)
l (2ρ2 − 1) =

= (−1)l(1− ρ2)−1/2 P2l((1− ρ2)1/2) . (144)

For l = 0, it then follows that

∫
R

0,−1/2
0 (ρ) ρ dρ =

∫
(1−ρ2)−1/2 ρ dρ = −(1−ρ2)1/2 = −R0,1/2

0 (ρ) . (145)

For l = 1, 2, ... it follows from (144) and the substitution τ = (1 − ρ2)1/2,
ρ dρ = −τ dτ that

∫
R

0,−1/2
2l (ρ) ρ dρ = (−1)l+1

∫
P2l(τ) dτ . (146)

Then from [16], (10.10),

Pk(τ) =
1

2k + 1
(P ′

k+1(τ)− P ′
k−1(τ)) , (147)

it follows that
∫

R
0,−1/2
2l (ρ) ρ dρ =

(−1)l+1

4l + 1
(P2l+1(τ)− P2l−1(τ)) . (148)
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Next, by [15], second item in (4.1.5),

P2l+1(x) = (−1)l xP
(1/2,0)
l (1− 2x2) . (149)

Using this with x = (1− ρ2)1/2, it is seen that

R
0,1/2
2l (ρ) = (1− ρ2)1/2 P

(1/2,0)
l (2ρ2 − 1) =

= (−1)l P2l+1((1− ρ2)1/2) . (150)

Now (141) follows from (149) by using τ = (1− ρ2)1/2.
To show (142), let l = 1, 2, ... . It follows from (150) and the substitution

τ = (1− ρ2)1/2, ρ dρ = −τ dτ that∫
R

0,1/2
2l (ρ) ρ dρ = (−1)l+1

∫
τ P2l+1(τ) dτ . (151)

Then by (147) and partial integration∫
R

0,1/2
2l (ρ) ρ dρ =

(−1)l+1

4l + 3

[
τ P2l+2(τ)−τ P2l(τ)−

∫
(P2l+2(τ)−P2l(τ)) dτ

]
.

(152)
Next, [16], (10.2),

xPk(x) =
k

2k + 1
Pk−1(x) +

k + 1

2k + 1
Pk+1(x) , (153)

is used. It follows from (152) and (147), (153) and some administration that∫
R

0,1/2
2l (ρ) ρ dρ =

=
(−1)l+1

4l + 3

[2l + 2

4l + 5
P2l+3(τ) +

4l + 3

(4l + 5)(4l + 1)
P2l+1(τ)− 2l + 1

4l + 1
P2l−1(τ)

]
.

(154)

Then (142) follows for l = 1, 2, ... by using (150) and τ = (1−ρ2)1/2. Finally,
for l = 0 it follows from (150) that∫

R
0,1/2
0 (ρ) ρ dρ =

∫
(1− ρ2)1/2 ρ dρ = − 1

3
(1− ρ2)3/2 , (155)

while (142) with l = 0 equals by (154)

−1
3
[3
5
P1(τ) +

2
5
P3(τ)] = −1

3
τ 3 = − 1

3
(1− ρ2)3/2 . (156)

The proof is complete.
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[13] S. Bará, J. Arines, J. Ares and P. Prado, “Direct transformation of
Zernike eye aberration coefficients between scaled, rotated, and/or dis-
placed pupils”, J. Opt. Soc. Am. A23, 2061–2066 (2006).

[14] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
(Dover Publications, New York, 1972).
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