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Abstract
Loudspeakers are often modelled as a rigid piston in an infinite baffle. As a model for real loudspeakers, this 
approach is limited in two ways. One issue is that a loudspeaker cone is not rigid, and a second issue is that a  
loudspeaker  is  mostly used in a  cabinet.  Both issues  are  addressed  here  by developing the velocity of  the  
radiator  in  terms  of  orthogonal  polynomials  known  from  optical  diffraction  theory  as  Zernike  circle 
polynomials. Using these polynomials we develop semi-analytic expressions for the sound pressure from the 
radiator in two different cases: as a flexible flat radiator mounted in an infinite baffle, and as the cap of a rigid  
sphere. In the latter case the comparison is done not only for the pressure but also for other quantities viz. the  
baffle-step response, sound power and directivity, and the acoustic centre of the radiator. These quantities are 
compared with those from a real  loudspeaker.  Finally,  in the case of the baffled-piston radiation the spatial 
impulse response is presented.

1. Nijboer-Zernike approach in acoustics: ANZ
The Nijboer-Zernike (NZ) approach in Optics is a method to compute optical point-spread 
functions for circular, focused, optical systems in the presence of aberrations. The approach 
has been devised by Zernike (1934) and his student Nijboer (1942), and the key features of it 
are expansion of non-uniformities in the exit pupil as a series of Zernike circle polynomials 
together with a convenient analytic result for the contribution of each of these polynomials to 
the point-spread function.
In recent years, the Nijboer-Zernike approach has been applied to solve forward and inverse 
problems in acoustical radiation from a flexible circular piston surrounded by a rigid infinite 
planar set (baffle) and from a flexible spherical cap on a rigid sphere [1-11]. The flexibility is  
embodied by a non-uniform velocity profile v that is assumed to be radially symmetric in the 
case of piston radiation and axially symmetric in the case of radiation from the cap. As in 
optical diffraction theory, the complex amplitude of the sound pressure in the baffled-piston 
case is given by a Rayleigh integral comprising the field point r in front of the baffle and the 
wave number k of the harmonic excitation applied to the piston with velocity profile v. The 
frequencies  that  are  used  in  acoustics  (20  Hz-20  kHz  in  audio  and  up  to  200  kHz  in 
ultrasound)  are  so  much  lower  than  those  used  in  optics  that  dispersion  effects  can  be 
neglected.  Furthermore,  although  the  phenomenon  of  focusing  does  manifest  itself  in 
acoustics (especially at higher frequencies), this does not usually occur to an extent that one 
can speak of a focal volume as in optics.

 1 This paper is based on a lecture for the Dutch acoustical society (NAG), NAG journaal, nr. 195, pp.1-10,  
March 2011.
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Despite all these differences with optics, a wealth of analytic results, with the basic result of 
the classical Nijboer-Zernike theory as cornerstone, have been obtained for piston radiation 
and also for radiation from a spherical cap. In both cases, the non-uniform velocity profile is 
considered  to  be  developed as  a  series  involving  the  Zernike  polynomials  (appropriately 
modified in the case of spherical-cap radiation). The contribution of each of these Zernike 
terms to the pressure and various other acoustical quantities turns out to have a tractable 
form, and so the corresponding quantity for the velocity profile can be obtained in semi-
analytic  form  by  linear  superposition.  Due  to  the  efficiency  of  the  Zernike  terms  in 
representing velocity profiles through their expansion coefficients, this offers the opportunity 
to  estimate  an  unknown  velocity  profile  v on  the  level  of  expansion  coefficients  from 
measured data in the field. 
Here one can use a matching approach in which the unknown expansion coefficients are 
found  by  requiring  an  optimal  match  between  the  measured  data  and  the  theoretical 
expression comprising the coefficients.

2. Far-field pressure obtained from near-field measurements

In Fig. 1 below we have plotted the analytic expression for the far-field pressure in case of 
baffled-piston radiation  due to  the first  four radially  symmetric  Zernike  terms.  The 
wave  number  k of  the  applied  harmonic  excitation  and  the  angle  θ between  the 
acoustical  axis  (perpendicular  to  the  baffle  and  passing  through  the  centre  of  the 
circular piston) and the line segment connecting piston centre and field point  r, have 
been combined into the single variable ka sin θ (a being the piston radius).

Figure 1: The far field pressure J2n+1  (ka sin  θ)/ka sin  θ as a function of wave number  k, piston radius  a and 
fieldpoint  angle  θ,  combined  into  the  single  variable  ka sin  θ,  for  the  first  four  Zernike  terms  (radially 
symmetric).
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In the case that we have a non-uniform velocity profile that can be accurately represented as a 
linear combination of these first four radially symmetric Zernike terms, one can thus compute 
the  corresponding  far-field  response  by  linear  superposition.  However,  the  required 
coefficients of such a linear combination are generally not available. It turns out that these 
coefficients can be estimated from measured on-axis pressure data. The key result here is an 
analytic expression, per radially symmetric Zernike term, for the on-axis pressure [1,3,4]. In 
Fig. 2 the modulus of the normalized on-axis pressure as a function of the normalized on-axis 
distance is plotted for the case of the first four radially symmetric Zernike terms. 

Figure 2: The modulus of the normalized on-axis pressure as a function of the normalized distance r/a for the 
first four radially symmetric Zernike terms.

The procedure then consists of estimating the unknown expansion coefficients of the piston 
velocity  profile  by  matching  the  measured  on-axis  pressure  data  with  the  theoretical 
expression for  the on-axis  pressure comprising  the unknown expansion coefficients.  This 
procedure has been applied to a real loudspeaker. Thus, the on-axis pressure was measured at 
10 near-field points.  From these near-field data,  the first  four coefficients  of the radially 
symmetric  Zernike terms describing the velocity  profile  on the flexible  membrane of the 
loudspeaker were estimated by matching. These four coefficients were fed into the theoretical 
linear superposition expression for the on-axis pressure [2,3], and the result is displayed in 
Fig. 3. In this figure the 10 measured on-axis pressure values at normalized axial distance are 
shown as the solid line connecting the data points, and the estimated on-axis pressure arising 
from the four estimated coefficients by linear superposition is shown as the dotted line. 
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Figure 3:  Measured on-axis near-field pressure data points connected by the black solid line pmeas,  and the 
estimated on-axis pressure prec, blue dotted line, as a function of the normalized distance r/a. The loudspeaker is 
a Vifa MG10 SD09-08 with membrane radius a=3.2 cm and measured in an IEC-baffle at 13.72 kHz.

The far-field of the loudspeaker can now also be predicted by linear superposition, using the 
four estimated coefficients, of the four far-field responses displayed in Fig. 1. Since the 
measurements  were  done  in  the  near-field  of  the  loudspeaker,  an  expensive 
measurement in the far-field of the loudspeaker by using an anechoic room has thus 
been avoided.

3. Comparing radiation from a loudspeaker and from a flexible 
spherical cap on a rigid sphere

It has been suggested by the theoretical physicists Morse and Ingard that the sound radiation 
of a loudspeaker in a box is comparable with that of a spherical cap on a rigid sphere, see Fig. 
4 below, when the volumes of the box and sphere and the areas of the vibrating membrane 
and cap are matched. This has been established recently by Aarts and Janssen [7,9,11] who 
developed,  starting  from  the  series  solution  of  the  Helmholtz  equation  with  spherical 
boundary conditions,  a Zernike-based computation scheme for the sound pressure on and 
around the sphere.

Figure 4: Geometry and notations of the pole cap S0.
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Thus, the normal component of the velocity profile on the cap is expanded in Zernike terms 
(appropriately modified so as to take account of the spherical, rather than flat, nature of the 
moving cap), and the contribution to the pressure of any field point of each of the Zernike 
terms is determined in semi-analytic  form. The loudspeaker (Vifa MG10SD09–08,  a= 32 
mm) was mounted in the square side of a rectangular cabinet with dimensions of 130 by 130 
by 186 mm and measured on a turntable in an anechoic room at 1 m distance, and measured 
by means of a PolyTec PSV-300-H scanning vibrometer  with an OFV-056 laser head. A 
vibration pattern of this driver at 2.4 kHz, overlaid with a picture of the driver in the cabinet, 
is shown in Fig. 5 below.

Figure 5: A vibration pattern of a driver at 2.4 kHz, overlaid with a picture of the driver in 
the cabinet.

In Fig. 6 three polar plots of the modulus of the pressure at four different frequencies and at 
one  meter  distance  have  been  compared.  The  top  figure  shows  the  polar  plot  of  a  real 
loudspeaker (the same loudspeaker as the one used in Figs. 3,5). The middle figure (Fig. 6b) 
shows the polar plot that arises in the case of baffled-piston radiation with a rigid piston (v is  
constant on the piston), and for this the analytic result shown in Fig. 1, n=0, has been used. 
The lower figure (Fig. 6c) shows the polar plot of a flexible spherical cap in a rigid sphere 
with a velocity profile on the cap such that the component in the z-direction is constant, and 
for this the Aarts-Janssen computation scheme has been used. The area of the piston and the 
area of the cap and the volume of the sphere have been chosen so as to be the same as the 
corresponding quantities of the real loudspeaker. As is apparent, the polar plots of the real 
loudspeaker and those obtained from the spherical-cap model resemble one another much 
more than the polar plots from the real loudspeaker and those obtained from the baffled-
piston model. This remarkable agreement between results for the sphere model and the true 
loudspeaker continues to hold for several other acoustical quantities such as the baffle-step 
response, the power and directivity, and the acoustical centre [7,11]. In Fig. 7 we demonstrate 
this  for the baffle-step response.  At low frequencies  the baffle  of a loudspeaker  is  small 
compared to its wavelength and, due to diffraction effects, radiates into the full space (4π-
field). At those low frequencies the radiator does not benefit from the baffle in terms of gain.  
At high frequencies the loudspeaker does benefit from the baffle which yields a gain of 6 dB. 
This transition is called the baffle step. It is seen from Figs. 7a,b that the pole-cap model  
produces a credible baffle-step response. In the case of radiation from a rigid piston in an 
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infinite baffle, the baffle step is absent since all frequencies benefit equally from the (infinite) 
baffle.

Figure 6: Polar plots of the pressure at frequency 1 kHz (solid, black curves), 4 kHz (dotted, red curves), 8 kHz 
(dashed-dotted, blue curves), and 16 kHz (dashed, green curves), normalized such that the pressure is 1 at θ=0 
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for a) loudspeaker (same as in Fig. 5) in a rectangular cabinet measured at 1 m distance, b) rigid piston in an  
infinite baffle, piston radius  a=3.2 cm, using far-field response of Fig. 1, n=0, c) rigid spherical cap with z-
component of the velocity profile equal to 1 m/s, cap aperture θ0=π/8, and r=1 in the Aarts-Janssen scheme [9].

Figure 7: Frequency responses for θ=0 (solid curve),  θ=π/9 (dotted curve),  θ=2π/9 (dashed-dotted curve), and 
θ=3π/9 (dashed curve). (a) Baffle step of a polar cap θ0=π/8 on a sphere of radius R=0.082 m, at distance r=1 m, 
(constant velocity V=v0=1 m/s). All curves are normalized such that the SPL is 0 dB at 100 Hz. (b) Frequency 
response of a driver (same as in Fig. 5), radius a=3.2 cm mounted in a square side of a rectangular cabinet with 
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dimensions 13x13x18.6 cm. The loudspeaker was measured in an anechoic room at 1 m distance. The on-axis  
response  was  normalized  to  0  dB at  200  Hz,  the  other  curves  were  normalized  by the  same amount.  (c)  
Response of a rigid piston (a=3.2 cm) in an infinite baffle in the far field. All curves are normalized such that 
the SPL is 0 dB at 100 Hz. 

Figure 8 shows plots of the calculated power for a rigid spherical cap moving with a constant 
acceleration and various apertures, θ0=5π/32 (solid curve), θ0=π/8 (dotted curve), and θ0=π/10 
(dashed-dotted  curve),  together  with  the  power  obtained  from the  measured  loudspeaker 
(dashed-irregular curve) [7,11].

Figure 8: The power Re[P]c/(2πρ0 a2 R4) [dB] vs. kR (log. axis) of a rigid spherical cap moving with a constant 
acceleration  (V'=ikcV)  and  various  apertures,  θ0=5π/32  (solid  curve),  θ0=π/8  (dotted  curve),  and  θ0=π/10 
(dashed-dotted curve), sphere radius R=8.2 cm, together with the power from the measured loudspeaker (same 
as in Fig. 5) (dashed-irregular curve). The logarithmic horizontal axis runs from kR=0.1-20, corresponding to a 
frequency range from 66 Hz-13.2 kHz.

In Fig. 9 the directivity index DI from the spherical cap model is shown, while in Fig. 10 the 
DI of the measured loudspeaker is given. This directivity index is a qualitative measure of 
how directive a particular sound radiator is: it  is the 10 log10 of the ratio of the modulus 
squared pressure on the axis in the far field produced by the considered radiator and the same 
quantity  produced by a  completely  non-directive,  point-source radiator,  provided that  the 
total radiated power of both radiators is the same [7,11]. It appears that the DI of the model 
and the measurement, Figs. 9 and 10 respectively, are rather similar.

8



Figure 9: The directivity index DI (explained in the text) of a rigid spherical cap with various aperture angles of 
the cap: 5π/32 rigid (solid, black curve), π/8 (dotted, red curve), and π/10 (dashed-dotted, blue curve). The long-
dashed, green curve starting for kR=0 at 3 (dB) is the directivity for a rigid piston in an infinite baffle, using the 
far-field response in Fig. 1, n=0.

Figure 10: The directivity index DI vs. kR of the loudspeaker (same as in Fig. 5) in a rectangular cabinet 
measured at 1 m distance.

The  acoustic  centre  of  a  reciprocal  transducer  can  be  defined  as  the  point  from  which 
spherical waves seem to be diverging when the transducer is acting as a source. There are, 
however, additional definitions. This concept is used mainly for microphones. Recently, the 
acoustic centre was discussed [11] for normal sealed-box loudspeakers as a particular point 
that acts as the origin of the low-frequency radiation of the loudspeaker. At low frequencies, 
the  radiation  from such  a  loudspeaker  becomes  simpler  as  the  wavelength  of  the  sound 
becomes larger relative to the enclosure dimensions, and the system behaves externally as a 
simple source (point source). The difference between the origin and the true acoustic centre is 
denoted by Δ. If p(r, 0) and p(r, π) are the sound pressure at the front and at the back of the 
loudspeaker, respectively, then Δ follows, assuming that R/r�1, from the ratio of these sound 
pressures  as  Δ=r(|q|-1)/(|q|+1),  where  q=p(r,0)/p(r,  π).  The  pole-cap  model  is  used  to 
calculate the function q and is shown in Fig. 11.
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Figure 11: Function 20 log10 |q| [dB] vs. kR (log axis) of rigid spherical cap for various apertures. —θ0=5 π /
32; . . . θ0= π /8;  – .– θ0= π /10;  – – – simple source on sphere. Constant cone velocity V, all at r=1 m; sphere 
radius R=82 mm. Solid circles—real driver [same as in Fig. 5; a =32 mm] mounted in square side of a 
rectangular cabinet. Logarithmic horizontal axis runs from kR = 0.02 to 30, corresponding to a frequency range 
from 13 Hz to 19.8 kHz.
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It appears [11] that for modest apertures (θ0≤0.5) and at low frequencies (kR ≤ 0.4), the 
acoustic centre for a loudspeaker lies about 0–0.5R in front of the loudspeaker. Here R is a 
characteristic size parameter of the cabinet such as (3V/4π)1/3 with V the volume of the 
cabinet (this equals the cabinet radius in case of a spherical cabinet). At higher frequencies, 
the acoustic centre shifts further away from the loudspeaker. For example, between kR=1 
(660 Hz) and kR=2 (1.32 kHz) q is about 5 dB (see Fig. 11), corresponding to Δ = 3.4R = 280 
mm.

4. Acoustical spatial impulse response
In the case of baffled-piston radiation, the complex amplitude p(r;k) of the pressure at a field 
point r in front of the baffle due to a harmonic excitation of frequency ω=kc, with c the speed 
of sound, is given by one of the Rayleigh integrals [6,10]. Since the media are not dispersive 
at the relevant frequencies, this Rayleigh integral representation holds in the same form for 
all involved wave numbers k. In accordance with well-established practices in physical signal 
analysis,  the spatial  impulse  response Φ(r;  t)  can be obtained by performing the Fourier 
transform of the velocity potential associated with p(r; k) with respect to k in which t is the 
Fourier variable. This Φ(r; t) is the impulse response at time t > 0 and at the field point r due 
to  an instantaneous  volume displacement  at  t=0 of  the  piston  with  non-uniform velocity 
profile v  vanishing  outside  the  piston.  According  to  the  impulse  response  principle  of 
acoustics, this Φ(r; t) can be obtained as the integral of the velocity profile v  along the arc 
consisting of all points on the piston that have equal distance ct to the field point  r. As a 
consequence, Φ(r; t) vanishes when ct is so small or so large that the arc is non-existing or 
does not contain piston points. In the case that v=v(σ), 0 ≤ σ ≤ a, is a radially symmetric 
profile on the circular piston of radius a and r=(0, 0, z) is an on-axis point, the value of the 
impulse response Φ(r=(0, 0, z); t) is a multiple of v (σ=(c2t2–z2) ½) when 0 < c2t2–z2 < a2 and 0 
otherwise. Hence the radially symmetric profile v(σ), σ ≤ 0 ≤ a, is reproduced at each axial 
point (0, 0, z) in warped form where the warping takes places according to σ=(c2t2–z2)½. This 
yields an approach to estimating velocity profiles from on-axis impulse response data.
In the case that r is a general non-axial point, the resulting integral expression for the impulse 
response Φ(r; t) is more complicated, even when v  is radially symmetric. Now it turns out 
that the approach of developing v into a Zernike series provides the solution to the forward 
computation problem. Indeed, Aarts and Janssen [6,10] have shown that each of the Zernike 
terms  involved  in  the  expansion  of v  has  an  explicit,  finite-terms  expansion  for  the 
contribution to the impulse response. In Fig. 12, two impulse responses Φ(r=(w, 0, z); t) are 
shown for the case that the normalized axial distance z/a from the piston plane equals ½, as a 
function of the normalized radial distance w/a from the axis and the normalized time variable 
ct/a. Figure 12 (a) shows this impulse response for the case that  v is constant on the piston 
(rigid  piston)  and Fig.  12  (b)  shows the  impulse  response  for  the  case  that  v(σ)=exp (-
4(σ/a)2),  0  ≤  σ  ≤  a.  The latter  velocity  profile  can  be  accurately  represented  using  nine 
radially  symmetric  Zernike  terms,  and  each  of  these  Zernike  terms  has  a  finite-series 
expression for its contribution to the impulse response.
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(a)

(b)
Figure 12: Spatial impulse response Φ((w, 0, z); t) with constant value z/a=½ of the axial variable as a function 
of the normalized radial variable w/a and the normalized time variable ct/a for the cases that (a) v(σ)=1, 0 ≤ σ ≤ 
a, (b) v(σ)=exp (-4(σ/a) 2).

The forward computation method given above can also be used in the reverse direction in 
which unknown velocity profiles are estimated on the level of their expansion coefficients by 
matching impulse response data that is measured with the theoretical expression comprising 
the unknown expansion coefficients.
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5. Conclusions
The Zernike circle polynomials from optics provide an efficient and robust means to describe 
velocity  profiles  of a  non-rigid piston in  a  baffle  and a  flexible  spherical  cap on a  rigid 
sphere. Only a few coefficients are necessary to approximate various velocity profiles. The 
polar plot of a rigid spherical cap on a rigid sphere has been shown to be quite similar to that  
of a real loudspeaker, and is useful in the full 4π-field. The cap model can be used to predict, 
besides polar plots, various other acoustical quantities of a loudspeaker including the sound 
pressure, baffle-step response, sound power, directivity, and the acoustic centre. The method 
enables one to solve the inverse problem of calculating the actual velocity profile of the cap 
radiator  using  (measured)  on-  and  off-axis  sound  pressure  data.  This  computed  velocity 
profile  allows  the  extrapolation  to  far-field  loudspeaker  pressure  data,  including  off-axis 
behaviour. Using Zernike expansions of radially symmetric velocity profiles on a baffled, 
circular piston, a computation scheme for spatial impulse responses is feasible.
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