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Abstract—Wireless networks equipped with the CSMA protocol
are subject to collisions due to interference. For a given interfer-
ence range, we investigate the tradeoff between collisions (hidden
nodes) and unused capacity (exposed nodes). We show that the
sensing range that maximizes throughput critically depends on the
activation rate of nodes. For infinite line networks, we prove the
existence of a threshold: When the activation rate is below this
threshold, the optimal sensing range is small (to maximize spatial
reuse).When the activation rate is above the threshold, the optimal
sensing range is just large enough to preclude all collisions. Simu-
lations suggest that this threshold policy extends to more complex
linear and nonlinear topologies.

Index Terms—Carrier-sensing range, collisions, exposed nodes,
hidden nodes, Markov processes, random-access, throughput,
wireless networks.

I. INTRODUCTION

C ARRIER sense multiple-access (CSMA)-type protocols
form a popular class of medium access protocols for

wireless networks. The first CSMA protocol was introduced
by Kleinrock and Tobagi [16] in 1975 and has seen many in-
carnations since, including the widely used 802.11 standard. In
this paper, we provide an asymptotic analysis of large wireless
networks operating under CSMA, in the presence of collisions.
CSMA is a randomized protocol that allows nodes to access

the medium in a distributed manner. The absence of a central-
ized scheduler creates more flexibility and allows for the de-
ployment of larger networks. An early example of such a ran-
domized procedure is the ALOHA protocol [1], which forces
nodes to wait for some random backoff period before starting a
transmission in order to reduce the likelihood of nearby nodes
transmitting simultaneously. The latter event would cause the
signals to interfere with each other and may result in a col-
lision that renders the transmissions useless. CSMA improves
upon ALOHA by letting nodes sense their surroundings to de-
tect the presence of other transmitting nodes. If a node detects at
least one active (i.e., transmitting) node within its sensing range,
its backoff timer is frozen, deferring the countdown until the
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channel is sensed clear. Using this mechanism, collisions can
be further reduced.
A key performance measure in wireless networks is

throughput, which we define as the average number of
successful transmissions per unit of time. We investigate the
relation between the sensing range and the throughput. The
effect of the sensing range can be understood as follows. A
small sensing range allows for more simultaneous transmis-
sions, but is less effective in reducing collisions. On the other
hand, a large sensing range admits fewer transmissions, but
also mitigates interference. The main contribution of this paper
is the examination of this tradeoff in relation to its effect on the
throughput.
The network is characterized by the sensing range and the in-

terference range. A node can only initiate a new transmission
when all nodes within its sensing range are inactive. This trans-
mission is successful when all nodes within the interference
range of the destination node are inactive, and fails otherwise.
The network performance suffers from two complementary is-
sues: hidden nodes and exposed nodes (see [16]). Hidden nodes
are nodes located outside the sensing range of the transmitter
and are therefore not detected by the carrier-sensing mecha-
nism. Hidden nodes cause collisions as they are within the re-
ceiver’s interference range. Exposed nodes are nodes located
outside the receiver’s interference range but inside the sender’s
sensing range. So despite being harmless to the transmission,
exposed nodes are nevertheless blocked. As the sensing range
grows, the number of hidden nodes decreases, and the number
of exposed nodes increases.
In recent years, the performance issues caused by hidden and

exposed nodes have been extensively studied in research liter-
ature. Various studies look at modifying the CSMA algorithm
to eliminate either hidden or exposed nodes, for example by
using separate control channels [20], through busy tone sig-
nals [12], [19], or by modifying and temporarily disabling the
carrier-sensing mechanism [13]. However, no such approach is
successful in simultaneously eliminating hidden and exposed
nodes, and solving either issue may exacerbate the other. In gen-
eral, eliminating both hidden and exposed nodes is considered
to be a very difficult problem [13].
Thus, rather than modifying the CSMA algorithm, we want

to balance hidden and exposed nodes by carefully choosing the
sensing range. The problem of finding the sensing range that
maximizes throughput has received considerable attention in
recent years [11], [17], [18], [27], [29], [30]. Although these
works each consider a distinct physical-layer and MAC-layer
model, all treat exposed and hidden nodes in a similar manner.
That is, they assume for each transmission the existence of a
hidden (exposed) node area such that this transmission will
collide (be blocked) if any node in this area is active. Rather
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than analyzing a fixed network structure, hidden and exposed
node events are then approximated by assuming a randomized
topology and computing the probability of an active hidden or
exposed node by multiplying the size of these areas by the node
density and assuming that nodes operate independently from
each other.
This approach ignores both the network structure and com-

plex interactions between nodes in a random-access network
and provides only a crude approximation of the carrier-sensing
tradeoff. In this paper, we consider a fixed network topology
and propose a model that does take into account the node inter-
actions by keeping track of the activity of the nodes over time.
Careful analysis of the resulting Markov chain model allows us
to demonstrate that the optimal sensing range in fact depends on
the activation rate of the nodes.
The classical model for such interaction in wireless networks

is developed in Boorstyn and Kershenbaum [5]. This model is
a special instance of a loss network [15] and has been used in
recent years to study throughput optimality [4], [14], [21], [23]
and fairness [8], [9], [25], [26] in a setting without collisions.
The stability region for large wireless networks with collisions
was investigated in [6].
In the spirit of [5], we model the network as a continuous-

time Markov process with interaction between the nodes, so
that nodes within a certain distance of an active node are si-
lenced, just as in CSMA. Such interaction is referred to in sta-
tistical physics as hard-core interaction. Typical for suchmodels
is the existence of a Gibbs measure that describes the stationary
distribution. This Gibbs measure is normalized by the partition
function, which involves a computationally cumbersome sum-
mation over all possible configurations. A substantial ingredient
of this paper is to characterize and approximate the partition
function. We shall consider the network, and thus the partition
function, in the asymptotic regime where the number of nodes
in the network tends to infinity. For such infinite line networks,
we are able to obtain structural results on the joint effect of
hidden nodes and exposed nodes. We determine analytically the
throughput-optimal sensing range that achieves the best tradeoff
between reducing hidden nodes and preventing exposed nodes.
We propose a novel model for evaluating the effect of ex-

posed and hidden nodes on throughput. In contrast to existing
such models, we keep track of node activity over time and
capture the effect of higher-order node interactions on network
performance. This model reveals various surprising results that
cannot be derived in the existing simplified models; our main
findings are as follows.
• The throughput-optimal sensing range depends on the
activation rate . The takes values in some bounded
interval and increases with .

• For regular networks, the transition from small to
large is very sudden.

• The network topology and transmission distance have a
significant impact on .

The remainder of this paper is structured as follows. In
Section II, we introduce the model and derive some aux-
iliary results. Section III discusses the main results on the
carrier-sensing tradeoff. In Section IV, we perform a detailed
study of the partition function. In Section V, we validate
the analytical results for the line network by simulation, and
we investigate networks with more general topologies. In

Section VI, we present the proofs of those results that are not
already proved in earlier sections.

II. MODEL DESCRIPTION

We consider a linear array of nodes, and we denote
the set of all nodes by . We fix the transmis-
sion distance and assume that whenever a node activates, it
transmits a single packet to either the node hops to its right
(with probability ) or to the node hops to its left (with prob-
ability ). To accommodate this, we introduce (pure desti-
nation) nodes and ,
which receive packets, but do not transmit packets themselves.
The case corresponds to nearest-neighbor transmissions,
where nodes can only transmit packets over a single hop. For

, nodes are allowed to skip their immediate neighbors.
As will be shown in Proposition 2, the throughput is insensi-
tive to the parameter . We assume that all nodes are saturated,
meaning that they have an infinite supply of packets available
for transmission.
After each transmission, nodes enter a backoff period,

meaning that they will remain inactive for some time. The
length of the backoff period is assumed to be exponentially dis-
tributed with mean . We assume all nodes to have the same
sensing range , so that node is prohibited from transmitting
whenever at least one node for which is active
(i.e., transmitting), in which case we say that node is blocked
by node . So when a node finishes its backoff period and it
finds at least one node within distance active, it enters a new
backoff period. When a node finds all nodes within distance
inactive upon finishing backoff, it starts a transmission. Trans-
missions last for an exponentially distributed duration with
unit mean. Under these assumptions, the -dimensional
process that describes the activity of nodes is a continuous-time
Markov process. Each state of the Markov process is described
by

(1)

where when node is active, and otherwise.
Let be the set of all feasible states. Here, we
call feasible if no two 1’s in are positions or less apart,
i.e., if . Let denote the vector
with all zeros, except for a 1 at position . The Markov process
that describes the activity of nodes is then fully specified by the
state space and the transition rates

if
if
otherwise

(2)

It is well known that this is a reversible Markov process (see [5]
and [22]) with limiting distribution

if is feasible
otherwise

(3)

with the partition function or normalization constant of
the probability distribution . The partition function can be de-
fined recursively as (see [5] and [22])

(4)
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The sequence is well studied. In fact, for a network with
nodes, represents the partition function, defined as the sum-
mation of probability over all possible states. Straightforward
calculations show that the the generating function of
can be written as (see, e.g., Pinksy and Yemini [22])

(5)

Let denote the distinct roots (see Proposition 8)
of

(6)

We denote by the unique positive real root for which
(see [22]). Applying partial fraction expansion to

(5) yields the following result (proved in Section VI).
Proposition 1: The partition function is given by

(7)

where are the roots of (6), and

(8)

The proof of Proposition 1 is provided in Section VI, along
with the other proofs not given in the main text.
To model interference, we introduce an interference range

. A transmission succeeds if and only if at the start of
this transmission, no nodes within distance of the receiving
node are already active. This type of interference is referred to
in the literature as the perfect capture collision model [5]. Note
that neither (2) nor (3) depends on , as collisions have no im-
pact on the dynamics of the system. Using the sensing range
and interference range , we can define formally hidden nodes
and exposed nodes. Consider a transmission from node to
node . Hidden nodes are then defined as nodes that are out-
side the sensing range of , but within the interference range of
. Such nodes are not blocked by the activity of node , but
their proximity to node makes the hidden nodes harmful to
the transmission from to . Conversely, exposed nodes are
those nodes that are within the sensing range of , but outside
the interference range of . Such nodes are blocked by an on-
going transmission from to , despite the fact that they will
not cause this transmission to fail. Denote by the set of
hidden nodes of transmissions from node 0 to node (node- ):
all nodes outside the sensing range of 0, but within the interfer-
ence range of the receiving node (node- ). By we
denote the set of nodes to which this transmission is exposed,
so all nodes within the sensing range of 0, but outside the inter-
ference range of the receiving node. For completeness, we let

denote the set of all remaining nodes that block trans-
missions from node 0 to node (node- ). This yields

Fig. 1. Examples of hidden and exposed nodes. (a) Node 3 is a hidden node
and may interfere with the transmission between nodes 0 and 1. (b) Node 0 is
an exposed node, unnecessarily silenced by the transmission between nodes 2
and 3.

Thus, . An example
with is given in Fig. 1(a). Node 3 is a hidden node, as it
interferes with the transmission from node 0 to node 1
despite the carrier-sensing mechanism . In Fig. 1(b),
node 0 is an exposed node to the transmission from node 2 to
node 3 because it would not interfere with this trans-
mission but is nevertheless silenced by the activity of node 2

.
We focus on node 0 (the node in the middle of the network)

and in particular its throughput defined as the av-
erage number of successful transmissions per unit of time.
Proposition 2: The throughput of node 0 is given by

(9)

Proof: Denote by the rate of successful transmis-
sion of node 0 to node (node- ), so .
The activation attempts to node (node- ) occur according to
a Poisson process with rate (rate ). We first con-
sider activation attempts toward node . Whether an activation
attempt is successful depends on the state of the system when
this attempt occurs. Define

When the system is in state , the attempt is blocked
and node 0 remains in its current state. When the system is in a
state , node 0 is not blocked so it activates. However, at
least one hidden node is active so the transmission fails and does
not contribute to the throughput. When the system is in state

, the perfect capture assumption guarantees a successful
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transmission. It follows from the PASTA property (cf. [2]) that
the probability of an arbitrary activation attempt resulting in a
successful transmission is equal to the limiting probability of the
system being in a state . Hence, the rate of successful
transmissions initialized (and thus the throughput) is given by

(10)

From the definitions of , and , we see that

(11)

where

(12)

Let denote the partition function for a subset of nodes
defined as . Then

(13)

The model on the line has the property that by conditioning on
the activity of one of the nodes, its state space can be decom-
posed, leading to two smaller instances of the same model on
the line. In particular, we know that (see
[5, Eq. (15)]), so that

(14)

where denotes the partition function of a network with con-
secutive nodes on a line. Similarly

(15)

and (9) follows by adding and .

III. MAIN RESULTS

Our principal aim is to choose the sensing range so that the
throughput is maximized for a given and . Define

(16)

Determining corresponds to quantifying and optimizing the
tradeoff between preventing collisions through interference
(preventing hidden nodes by setting large) and allowing
harmless transmissions (preventing exposed nodes by setting
small). We want to obtain structural insights in how to choose
, and for this purpose the expressions for in (7) and

in (9) are too cumbersome. Therefore, we investi-
gate the throughput in the regime where the network becomes
large , so that (9) simplifies considerably, allowing for
more explicit analysis. The analytic results that we obtain for
the infinite network provide remarkably sharp approximations
for the finite network; see Section III-B. All proofs that are not
given in this section are provided in Section VI.
We start by presenting the limiting expression for

as the size of the network becomes infinite.

Proposition 3: Let denote the unique positive real root of
(6). Then

(17)

where

if
if
if

(18)

Proof: From Rouché’s theorem (see De Bruijn [7]), it
readily follows that for , and so from
(7) we get

(19)

Hence

(20)

which, using (8) with , yields (18).
Now that we have the limiting expression for the throughput

in (17), we opt for an asymptotic analysis. That is, instead of
searching for , we search for its asymptotic counterpart

(21)

where we henceforth consider as a function of the real vari-
able . In Section III-B, we show that the errors
and become small, already for moderate values of .
Because we consider from here onwards the regime ,
all nodes have the same number of nodes within their sensing
range. This removes all boundary effects, and all nodes have the
same throughput, which is why just investigating node 0 is suf-
ficient to investigate the entire network.
Proposition 4: .
The result of Proposition 4 can be understood as follows. By

increasing beyond , no additional collisions are pre-
vented, but an increasing number of nodes is silenced. On the
other hand, the nodes that become unblocked when decreasing
below cause collisions when they activate. Although

this result may seem intuitively clear, to the authors’ knowledge,
such a result has not been proved rigorously (at least not in the
present setting). Note that for all values , we
can rewrite (17), using (6), as

(22)

with

(23)

We are now in the position to present our main result. While
we already know that the optimal sensing range is contained in
the interval , the next result is more specific.
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Fig. 2. Optimal sensing range as a function of .

Theorem 1: There exists a threshold interval
such that

if
if

(24)

and increases from to when increases from
to .

The proof of Theorem 1—see Section VI—follows from a
detailed study of that involves implicit differentiation
with respect to (since is defined implicitly).
Theorem 1 can be interpreted as follows (see Fig. 2). When
is large, nodes activate very quickly after finishing their pre-

vious transmissions. When the system is in a maximal indepen-
dent set, and if collisions are not ruled out, an activating node
suffers a collision almost surely. This explains why for large,
the optimal sensing range is , preventing collisions
completely. On the other hand, when is small, collisions be-
come rare, as few nodes are active simultaneously. In this case,
the throughput is best served by increasing the spatial reuse, that
is, decreasing the sensing range (up to ). This explains the
result of Theorem 1 for small.
Note that Theorem 1 does not give the exact values of

and . Instead, we give below an estimate of the location
and width of the threshold interval.
Theorem 2: Let with .
(i) The threshold interval is bounded as

(25)

(ii) Thewidth of the threshold interval is asymptotically given
as

as (26)

Here, we say that if as .
From Theorem 2(ii) we see that the width of the threshold in-
terval is . Therefore, the interval width decreases rapidly
as a function of , and we can speak of an almost immediate
transition from one regime to the other

. As a by-product of the proof of Theorem 2(ii), we ob-
tain sharp approximations for and ; see (93) and (94)

(27)

with and
.

So far, we have maximized the throughput over while as-
suming to be fixed. We now assume is bounded as

for some constant , and consider the joint optimiza-
tion problem of finding the -pair that solves

(28)

There is the following result.
Theorem 3: The solution to the joint optimization

problem (28) is given by

(29)

Thus according to Theorem 3, the throughput is maximized
by setting as large as possible and choosing the corresponding
optimal value of .

A. Throughput Limiting Behavior

We now consider some limiting regimes for which we can
make more explicit statements about the throughput. From
Theorem 2, we can already see that the threshold interval
moves in the direction of zero as becomes large, which
implies that for small values of . The next result
shows that in the regime where becomes large, the maximum
throughput tends to zero.
Proposition 5: Let be fixed. As

(30)
For , our model reduces to a model without col-

lisions that was studied extensively in [3], [5], [10], [22], [25],
and [28]. In particular, one immediately obtains the following
result from (6) and (17).
Corollary 1: Let . Then

(31)

This result was also derived in [3], [10], [22], and [28]. Note
that as the intended receiver is no longer relevant in the case
without collisions, does not appear in (31).
From Proposition 7 and the proof of Proposition 5, it is seen

that as and is fixed, and that
as and is fixed. Thus, the throughput is approximately

when either or is large. This can be understood as fol-
lows. For large , the high activation rate allows for configura-
tions close to the maximum-size independent set: a configura-
tion in which one out of every nodes in active. For large,
when a node deactivates, a large number of neighboring nodes
become eligible for activation. The time until the first such node
activates goes to 0 when increases.
Corollary 2: Let . Then

(32)

Proof: From (45) with , it follows that

(33)
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Fig. 3. Throughput plotted against for and various values
of .

Fig. 4. Throughput (dashed) and (solid) plotted against (with ).
(a) . (b) .

Substituting (33) into (17), and using that when
, yields

(34)
which gives (32).
Fig. 3 shows the throughput plotted against the activation

rate for , and various values of . When ,
the throughput gradually drops to 0, whereas for , the
throughput will eventually converge to the limit . This
confirms Corollaries 1 and 2.

B. Finite Versus Infinite Line Networks

We now look at the approximation error and the re-
sulting error in the optimal sensing range. To investigate the
error, we plot and in Fig. 4, represented by the dashed line
and the solid line, respectively. All results for were obtained
by using (7) and (9) in combination with the infinite-series ex-
pressions for the roots in Section IV. In this section, we restrict
ourselves to the case , but we see similar behavior for
general .
We take (201 nodes), , and we let increase

from 1 to 100. In Fig. 4(a), ; in Fig. 4(b), .
For small, the error is negligible, but the error
increases as increases. This can be explained by the observa-
tion that for larger , the number of roots of (6) increases, as
does the number of roots discarded by the approximation. This
phenomenon becomes more pronounced for larger values of .
The nonmonotone behavior of is caused by the fact that for fi-
nite , the system is directed to maximum-size independent sets

Fig. 5. Throughput (dashed) and (solid) plotted against (with ).
(a) . (b) .

Fig. 6. Optimal sensing range (dashed) and (solid) plotted against
around the threshold interval for various values of and . (a) .
(b) . (c) . (d) .

of active nodes, in particular for large, and these sets change
dramatically with . The most important observation is that the
error is small for those values of that lead to a large
throughput. Fig. 5 is similar to Fig. 4, but instead of fixing
and varying , we set and vary . In Fig. 5(a), we take

, and in Fig. 5(b), we take . The accuracy of the
approximation increases with .
Fig. 6 shows the optimal sensing range plotted against , for

. Fig. 6(a)–(d) shows the optimal range for finite
. We take for all figures, and let increase from 0.15
to 0.19. The vertical lines indicate the approximations of the
threshold interval from (27), and we see that these are sharp.
The optimal sensing range for behaves as predicted
by Theorem 1, jumping from before the threshold interval,
to after this interval, and shows a similar pattern. We
conclude that provides a good approximation for the
behavior of finite-sized networks, already for small and mod-
erate values of .
An alternative approach to studying the difference between

finite and infinite networks is to look at the rate at which con-
verges to . This rate is characterized by , the modulus
of the ratio of the second-largest and largest root of (6). Approx-
imating and using the terms from the expansion
(45), we obtain for large

(35)

where

(36)
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The case with small generally shows better convergence,
as illustrated in Fig. 5. Here, a similar approximation can be
obtained using (37) and (38).

IV. PARTITION FUNCTION ROOTS

In this section, we study the roots of (6) in more
detail. In particular, we derive exact infinite-series expressions
for the roots that are used in this paper both for numerical pur-
poses (in Section V) and to prove Corollary 2. These roots are
essential in Section III-B, where the finite and infinite networks
are compared. Our main tool will be the Lagrange inversion the-
orem (see [7]), and depending on the value of , this gives two
different infinite-series expressions. Let
denote the Pochhammer symbol.
Proposition 6: For small

(37)

(38)

where and . The series ex-
pansions in (37) and (38) converge for

(39)

and diverge otherwise.
Proof: We first consider the case . Set ,

so satisfies . Hence for small values of ,
we have by Lagrange’s inversion theorem

(40)

Next we consider the case that . We now write (6)
as

(41)

where

(42)

Then, we get for sufficiently small

(43)

The radii of convergence of the series in (40) and (43) are
easily obtained from the asymptotics

(44)

of the -function, used to examine the Pochhammer quantities
and the factorials that occur

in both series. This yields the result that both series converge
when and diverge for . When ,
the terms in either series are .
Proposition 7: For large

(45)
where . The series expansion in (45)
converges for

(46)

and diverges otherwise, where is given in (39).
Proof: We can treat the cases and

simultaneously now. We write (6) in the form

(47)

where we let

(48)

with in (48). We get for sufficiently large from
Lagrange’s inversion theorem (with ) that

(49)

The Pochhammer quantity vanishes if and only if
is a multiple of . The radius of convergence of

the series in (49) is again determined by the asymptotics of the
-function in (44). Here, it must also be used that

(50)

It follows that the series in (49) is convergent when
and divergent when . When , the terms in
the series are .
Fig. 7 shows the roots of (6) drawn in the complex -plane

for . Each heavy solid line corresponds to a root as a func-
tion of , and the dots represent the threshold . The
light solid straight line and the dashed straight line illustrate the
leading behavior of each root as or according
to Propositions 6 and 7, respectively. The dashed curve encir-
cling the origin 0 and the point 1 is the image of with

, under the mapping given by the re-
ciprocal of the right-hand side of (45) with replaced by .

V. DISCUSSION AND OUTLOOK

The distinguishing feature of this paper is the presence of
node interaction when making the tradeoff between hidden
nodes and exposed nodes. In order to get a handle on the
throughput function (and hence the partition function), we
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Fig. 7. Roots of as functions of in (37), (38), and (45), for
.

studied the wireless network in the asymptotic regime of
infinitely many nodes. This resulted in a tractable limiting
expression for the throughput of node zero (and hence of any
other node) that allowed us to prove the following three results.
1) To optimize the throughput, one should always choose
a sensing range that is close to the interference range
, and in fact the optimal sensing range is contained in
the interval (see Proposition 4).

2) The sensing range that optimizes the throughput
equals for less aggressive nodes (small ) and

for aggressive nodes (large ). In fact, we were
able to show the existence of a threshold interval for
that distinguishes these two regimes (Theorem 1). This
important result provides (partial) justification for the
frequently made assumption that no collisions occur.
Indeed, one key takeaway is that if is large enough,
ruling out all collisions by setting is optimal.

3) In case the can take any value , the
pair that jointly maximizes the throughput is
given by . Hence, the optimal setting is to
choose the as large as possible, and then to select the
sensing range that maximizes throughput for this partic-
ular -value.

We have further shown that the threshold interval is in many
cases small, which implies that one can speak of an almost im-
mediate transition from one regime to the other

. We have argued that when the aggressiveness of
the nodes is large enough, the system no longer gains from the
potential benefits of more flexibility (small ) and just settles
for the situation with no collisions.
We shall now discuss two remaining issues. In Section V-A,

we consider the case of random transmission distance, and in
Section V-B, we investigate whether the notions of two regimes
and a critical threshold carry over to more general topologies.

A. Random Transmission Distance

We now relax the assumption that packets are always sent to
nodes at distance , and instead allow for transmissions toward
any node within some transmission range . We assume

Fig. 8. Impact of the sensing range as a function of , for , and
. (a) and . (b) and .

that a transmission is intended for a node at distance with
probability . By conditioning on the trans-
mission distance and following the arguments from the proof of
Proposition 2, the throughput in this case may be written as

(51)
with the partition function (7), as before.
The choice for sensing range that maximizes (51) behaves

markedly different from the fixed-range case. Consider for ex-
ample a network with , and (so the trans-
mission range is either 1 or 2). We numerically compute the
as a function of for and [Fig. 8(a)] and for

and [Fig. 8(b)]. The optimal sensing range no
longer consists of two regimes separated by a threshold interval,
and we see that does not necessarily approach
when is large. This can be explained by the observation that,
for large, the contribution to the throughput by transmissions
over a distance of at least will approach 0 since the network
is so densely packet that all such transmission will suffer a col-
lision. However, transmissions over a smaller distance will re-
main successful, so depending on the choice of the , it might
be beneficial to choose a sensing range that is smaller than ,
even for .
Analogous to Proposition 3, when the network becomes

large, we can once more use the asymptotic in (7), and we may
write

(52)

with

(53)

This asymptotic throughput function may have several sta-
tionary points as a function of , as is illustrated in Fig. 9. This
makes the issue of finding an optimal more complicated
than in the case of a fixed transmission range.
Although each of the individual terms in (52) has a unique

stationary point, there is no intuitive explanation why unique-
ness does not necessarily hold when multiple terms are com-
bined. It is worth noting that the existence of multiple stationary
points appears rare, and that the counterexample for uniqueness
in Fig. 9 relies on the careful choice for the coefficients and
.

B. General Topologies

In order to investigate topologies beyond linear networks, we
require a more general description of the model. In addition
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Fig. 9. plotted against , for
and various values of . (a) . (b)

.

Fig. 10. Throughput-average optimal sensing range for a 16-node linear net-
work. (a) . (b) .

to nodes, we also introduce links connecting two nodes, rep-
resenting the possibility of transmissions taking place between
these nodes. For two nodes to be able to transmit data, we re-
quire them to be at most within (Euclidian) distance of each
other, and we assume that links are formed between all nodes
within distance . Each node has activation rate , and the des-
tination of a transmission is chosen uniformly among all links
originating from the activating node. The sensing range and
interference range are also defined using Euclidian distance.
Our numerical experiments consist of discrete-event simula-

tions of the dynamics described in Section II, generalized to ar-
bitrary network topologies. While for infinite line networks it
suffices to maximize the throughput of just node 0 (due to sym-
metry), our objective for general networks is to maximize the
average per-node throughput. First, we apply this objective to a
16-node linear network with nodes at unit distance and ,
so nodes only transmit to direct neighbors. Fig. 10 shows the
optimal sensing range as a function of , for and

. We see that behaves similarly to the optimal sensing
range for finite linear networks observed in Section III-B, which
suggests that using the average throughput as an objective is a
natural extension of the throughput of node 0. Most importantly,
we observe the anticipated dependence of on , and a very
narrow critical interval between the regimes small and
large.
Next, we consider 16 nodes placed on a 4 4 grid at unit

distance from each other. We set and , so each
node is connected with up to four links, and transmissions are
potentially interfered with by activity of the direct neighbors of
the receiving node; see Fig. 11(a). Fig. 11(b) shows the optimal
sensing range plotted against . Similar to our analytical
results for the linear network, we observe that has a significant
impact on the optimal sensing range: The is increasing in
. The intuition for this is similar to that for linear networks
provided in Section III. Note that the two optimal regimes are
once again separated by a narrow critical interval.
Finally, we obtain by simulation the optimal sensing range

for two randomly generated networks. Each network is created
by placing 16 nodes uniformly at random in a unit square. We

Fig. 11. (a) 4 4 grid network. (b) Its optimal sensing range plotted against
.

Fig. 12. Two heterogeneous network topologies. (a) Network 1. (b) Network 2.

Fig. 13. Throughput for various values of . (a) Network 1. (b) Network 2.

Fig. 14. Optimal sensing range plotted against . (a) Network 1. (b) Network 2.

assume a transmission range of and interference range
. Fig. 12 shows the topologies of both networks under

consideration: The vertices correspond to the nodes, and two
nodes share an edge if they are within transmission range
. We let the sensing range vary from to in

small increments, and simulate for each the throughput as a
function of . Fig. 13 shows the average per-node throughput
plotted against , for various values of , and in Fig. 14 we plot
the optimal sensing range obtained from the simulations.
The two irregular networks shown in Fig. 12 have very dis-

tinct structures, and as expected, the behavior and performance
of CSMA differs significantly between these networks. Com-
pare, for example, the difference in throughput and the fact that
the impact of the sensing range is smaller for network 2. How-
ever, both networks also show striking similarities and behave
largely as predicted by our analytical results for linear networks.
For instance, we see that for small, the throughput drops as
increases due to the higher number of collisions. Moreover, the
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optimal sensing range is an increasing function of . Note
that, for these particular networks, the existence of various op-
timal regimes separated by critical intervals is less pronounced.
In general, the tradeoff for individual nodes in an irregular net-
work is more complex than in a linear network due to the node
heterogeneity and raises many interesting questions for future
research.

C. Future Work

Wireless networks equipped with CSMA on complex topolo-
gies form highly relevant objects for further study. In partic-
ular, we have raised the question whether a threshold interval for
the activation rate exists, which says that the optimal sensing
ranges equals for below the interval, and for above
the interval. For the two examples in Section V-B, there is in-
deed such a threshold interval, but a more thorough study is
needed.
Obtaining numerical and analytical results for complex

topologies with many nodes is challenging. For one thing, the
state space no longer decomposes (as with the line network),
so that the calculation of the partition function becomes more
involved. In determining the stationary distribution, and hence
the throughput of nodes, the brute-force method would be
to sum over all possible configurations, but that will become
computationally cumbersome, already for moderate instances
of the network. Alternative approaches would be to use limit
theorems, for instance for highly dense networks with many
nodes. We conjecture that, in such networks, we would again
find that the optimal sensing range is increasing rather than
constant in the activation rate.

VI. REMAINING PROOFS

A. Proof of Proposition 1

We write the generating function from (5) as

(54)

where

(55)

It is shown in [22] that the equation has roots
, and exactly one of them, , is real and positive,

while . To prove Proposition 1, we first
need to establish that these roots are distinct.
Proposition 8: The roots of are distinct.
Proof: When , we have

(56)

This implies that and so that .
However, is nonnegative.
Now we proceed with the proof of Proposition 1. Let
so that satisfies (6). Using that all zeros of are

distinct, we have for the partial fraction expansion

(57)

Now

(58)

Here it has been used that

(59)

Then, for , we have

(60)

as required.

B. Proof of Proposition 4

As introduced earlier

(61)

Then, depends on and , we have , and

(62)

By implicit differentiation with respect to , we get from (62)
that

(63)

In particular, both and decrease as a function of .
Consider the case that . Using , we

get

(64)

Now increases as a function of , and we shall show that
decreases in . We have from (63) that

(65)

where the last inequality follows from .
We conclude that increases as a function of .
Next, we consider the case that . From

we get

(66)
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Now

(67)

see (63), and so decreases as a function of . Since
depends continuously on , the result follows.

C. Proof of Theorem 1

The proof of the result as stated in Theorem 1 requires ex-
panding several other results. We consider
so that

(68)

From (63), it follows from a straightforward but somewhat
lengthy computation that

(69)

Let

(70)
Then, we have for that

increases strictly at (71)

decreases strictly at (72)

We analyze in some detail, especially for values of
such that . We recall here that is a
function of and as well.
We fix , and we compute

(73)

We get from (62) by implicit differentiation that

(74)

Furthermore, it is seen from (62) that as
and that as . Hence, increases
from 0 to as increases from 0 to . Moreover

(75)

It follows from (74) and (75) that . Then, from
(70) and from the fact that increases from 0 to as in-
creases from 0 to , we have that increases from 0 to
as increases from 0 to . Therefore, for any , there

is a unique such that

(76)

We shall next show that increases in .
By implicit differentiation in (76), we have for

(77)

where and denote the respective partial derivatives (and
is the left and right derivative for and , respec-

tively). We already know that , and we shall show now
that . To that end, we compute using definition
(70) of and (63) that

(78)

Next, from (70) and (76), we have that

(79)

and so

(80)

where (63) has been used once more. Finally, from (70) and (76)

(81)

since and . Hence, as
required. It now follows from (77) and from
that when .
We have now shown that increases in
. Next, we let

(82)

For , there is defined the inverse function
that increases in . It follows then from

(83)

and (69)–(72) that is maximal at when
.
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We shall now complete the proof of Theorem 1. Let
, and assume that . Then,

and so since increases in .
Hence, strictly decreases at . Similarly, strictly increases at

when . It follows that strictly
decreases in when and that
strictly increases in when .

Finally, when , we have that

(84)

showing that strictly increases at and strictly
decreases at and assumes its maximum at .

D. Proof of Theorem 2

We shall show below that

(85)

where . Assuming this, we recall that (for fixed
) strictly increases in , and vice versa. When now

(86)

then , and we have that
. Thus, since is increasing in . Similarly, when

(87)

we have that , and then from (85) that
, and so .

This proves Theorem 2(i). It remains to show (85). As to the
first inequality in (85), we have

(88)

since and . As to the second
inequality of (85), we have

(89)

As before

(90)

and

(91)

With , the right-hand side of (91) becomes

(92)

and this is positive since and . This
shows the second inequality in (85).
We next prove Theorem 2(ii), and for this we need the fol-

lowing result.
Proposition 9: With where

(93)

where

(94)

and the holds uniformly in .
Proof: We have where is the unique

solution of the equation

(95)

We know from the proof of Theorem 2(i) that .
Multiplying (95) by and expanding

(96)

we get

(97)

Next, let be independent of and use to write

(98)

Together with , we obtain

(99)

We now take such that the whole second term in (99) is
. Using that , this leads to

(100)

and this yields the in (94). The polynomial has a
zero of first order at . Hence, with as in (94), we see
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from that
, and this yields .

Now we proceed to prove Theorem 2(ii). We use the result of
Proposition 9. Thus

(101)

(102)

By elementary considerations

(103)
Then, letting and

(104)

in accordance with Proposition 9, it follows that

(105)

Finally, it follows easily from that
.

E. Proof of Proposition 5

Since is fixed, it follows from (see the proof of
Theorem 2)

(106)

that when is large enough. Then, by Theorem 1

(107)

where is the unique positive real root of .
We shall show that

(108)

(109)

as , uniformly in , where and
are fixed. To show (108), we note from that

(110)

Next, , and so
. Therefore

(111)
and (108) follows. As to (109), we first observe from (63) that
decreases in when is fixed. Hence,

exists, and it follows from that .
Thus, decreases to 0 as . Then, from (110), we get that

increases to as . All this holds uniformly in
: Since increases in , the right-hand side of (110)

is bounded below by . Now take
such that when and . Then,
from , we have

(112)
when and . Hence, when

(113)

where the holds uniformly in . Then, by (110)

(114)

with holding uniformly in and . From
(113) and (114), we get (108) uniformly in .

F. Proof of Theorem 3

Recall that . The proof of Theorem 3 requires
the following result.
Lemma 1: If

(115)

then we have that .
Proof: When satisfies (115), we have that

(116)

Now, for , we have that

(117)
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We have

(118)

and

(119)

Hence, when , the series in (117) is alternating, with terms
decreasingmonotonically to 0 inmodulus and has a positive first
term. Hence

(120)

Taking in (120), it is seen that

(121)

and so, from (116), , as required.
We now proceed to prove Theorem 3. We want to show that

is increasing in . For , we have
by Theorem 1 that , and it readily follows from
Corollary 1 and (74) that is increasing in .
Let , and observe that

(122)

Here, it has been used that

(123)

Let and set .
Rewriting (117), we have

(124)

and we compute

(125)

Since by (74), , we have that

(126)

We compute

(127)

so (126) can be rewritten as

(128)

Thus, we have to verify the second member of (128) for the
special case that .When , we have

, and the second member of (128) turns into

(129)

Now increases in , and so
is maximal when . Hence, it suffices to check the
second member of (128) for the case that .
When , we have from that

(130)

When , the function is
increasing, and so, from Lemma 1, using , we get

(131)

Set . We have to check whether

(132)

The left-hand side of (132) equals

(133)

and this is less than since .
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