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Abstract

Consider the all-time maximum of a Brownian motion with negative drift. Assume that
this process is sampled at certain points in time, where the time between two consecutive
points is rendered by an Erlang distribution with mean 1/ω. The family of Erlang distri-
butions covers the entire range between deterministic and exponential distributions. We
show that the average convergence rate as ω → ∞ for all such Erlangian sampled Brow-
nian motions is O(ω−1/2), and that the constant involved in O ranges from −ζ(1/2)/

√
2π

for deterministic sampling to 1/
√

2 for exponential sampling. The basic ingredients of our
analysis are a finite-series expressions for the expected maximum, an asymptotic expansion
of
∑k−1

j=1 (1 − exp(2πij/k))−s as k → ∞ using Euler-Maclaurin summation, and Fourier
sampling of functions analytic in an open set containing the closed unit disk.
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1 Introduction

Let {Bβ(t) : t ≥ 0} be a Brownian motion with negative drift defined as

Bβ(t) = −βt+W (t), β ≥ 0, (1)

with Bβ(0) = 0 and {W (t) : t ≥ 0} a Wiener process (standard Brownian motion). Since
β is assumed to be positive, the Brownian motion will eventually drift towards −∞, and the
all-time maximum M̃β = supt∈R+ Bβ(t) is well defined. In fact, it is known that M̃β follows an
exponential distribution with rate 2β, so that P(M̃β ≥ x) = e−2βx (see e.g. [8, Lemma 5.5]),
and hence the expected all-time maximum is simply given by EM̃β = 1/2β.

We consider sampled versions of the Brownian motion, meaning that we observe the process
only at time points t0 = 0, t1, t2, . . .. A crucial assumption we make is that the times between
consecutive sampling points Tn = tn − tn−1, n ∈ N are independent and identically distributed
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(i.i.d.). Let T denote a generic random variable with T
d=T1 (here d= denotes ‘equal in distri-

bution’) and ET = ω−1. The constant ω represents the expected number of observations per
unit of time, henceforth referred to as the sampling frequency.

It is readily seen that a sampled version of the Brownian motion constitutes a random walk
{Sβ(n) : n ∈ N} with Sβ(0) = 0 and Sβ(n) = X1 + . . . + Xn, with X,X1, X2, . . . i.i.d. and

X
d=Bβ(T ). The fact that Brownian motion evolves in continuous space and time leads to great

simplifications in determining its properties. In contrast, the random walks that we obtain after
sampling, moving only at certain points in time, are objects that are much harder to study.
Although it is obvious that, as ω →∞, the behavior of the random walk should become identical
to that of the Brownian motion, there are many effects to take into account for finite ω. Let the
maximum of the random walk be denoted by Mβ(ω) = supn=0,1,...Bβ(tn). The sampling error
∆β(ω) = M̃β −Mβ(ω) then depends on the drift β, the sampling frequency ω, and of course
on the distribution of T . This paper deals with the expected maximum of the random walks
and, in particular, its deviation E∆β(ω) from the expected maximum 1/2β of the underlying
Brownian motion. This relatively simple characteristic already turns out to have an intriguing
description.

We assume that the times between sampling points are drawn from an Erlang distribution,
so that T d=Ek(λ) with Ek(λ) an Erlang distributed random variable consisting of k independent
exponential phases, each with mean 1/λ, and

P(Ek(λ) < x) = 1−
k−1∑
n=0

1
n!

e−λx(λx)n, x ≥ 0. (2)

The mean and variance of Ek(λ) are given by k/λ and k/λ2, respectively. One reason for
working under the assumption of Erlangian sampling is that T constant and T exponentially
distributed are opposite extremes with regard to randomness as well as in the family of Erlang
distributions (viz. with λ = kω and k → ∞ and k = 1, respectively). Another reason is that
Erlangian sampling leads to a random walk of which the distribution of the all-time maximum
allows for an explicit solution. This gives rise to a series expression for EMβ(ω; k) in which
the k terms involve the k roots of P (σ) = [σ(1 + ρ − σ)]k − ρk = 0 in |σ| < 1 with ρ ∈ (0, 1)
given by k(1 − ρ)2ω = 2β2ρ. In this paper this series expression is first analyzed for the case
that ω →∞ while k remains bounded, yielding a leading-order behavior of E∆β(ω) of the form
−ω−1/2ϕk/

√
2π + O(ω−1). Here ϕk is given explicitly in terms of the unit roots exp(2πij/k),

and tends to ζ(1/2) as k → ∞. Next, a substantial effort is spent to make the O(ω−1)-term
in the leading-order behavior of E∆β(ω) uniform in all k ≥ 1. To do this, an alternative series
representation of EMβ(ω; k) is derived that involves also the roots of P in |σ| ≥ 1. Finally,
this alternative representation can also be used to describe the way in which EMβ(ω; k)→ 0 as
ω → 0 and k →∞. For a detailed overview of our results we refer to Subsection 2.4.

2 Preliminary results

In this section we present some first results. We show how the Erlangian sampling leads to a
tractable random walk. We also derive a general expression for the expected all-time maximum.
Before we do so, we pay attention to the special cases of equidistant sampling and exponential
sampling, for which results are available in the literature.
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2.1 Equidistant sampling

In the case of equidistant sampling the time between two consecutive sampling points is always
1/ω. From the definition of Brownian motion it then immediately follows that

Bβ(T ) d=N(−βω−1, ω−1),

where N(a, b) denotes a normally distributed random variable with mean a and variance b. We
should thus consider the maximum of a random walk with normally distributed increments,
referred to in the literature as the Gaussian random walk. The maximum of this random walk
was studied in [7, 14]. In particular, [14, Thm. 2] yields, for ω > β/(2

√
π),

EMβ(ω) =
1

2β
+
ζ(1/2)√

2πω
+

β

4ω
+

β2

ω
√

2πω

∞∑
r=0

ζ(−1/2− r)
r!(2r + 1)(2r + 2)

(
−β2

2ω

)r
, (3)

with ζ the Riemann zeta function. This implies immediately that

E∆β(ω) = −ζ(1/2)√
2πω

+O(ω−1) (4)

with −ζ(1/2)/
√

2π ≈ 0.5826. Results similar to (4), in slightly different settings, have been
presented in [3, Thm. 2] and [6, Thm. 1]. A crucial difference is that our result (3) is obtained
from the exact expression for EMβ(ω), while the results in [3, 6] are derived from considering
the Brownian motion in a finite time interval, and estimating its maximum by Euler-Maclaurin
summation.

2.2 Exponential sampling

In the case of exponential sampling, we assume that the times between consecutive sampling
points are independent and exponentially distributed with mean 1/ω. In this case we can prove
the following result.

Lemma 2.1. If T d=E1(ω) then

Bβ(T ) d=E1(γ2)− E1(γ1), (5)

where
γ1 = −β +

√
β2 + 2ω, γ2 = β +

√
β2 + 2ω. (6)

Proof. For βs+ s2/2 < ω,

E(e−sBβ(T )) =
∫ ∞

0
e(βs+s

2/2)tωe−ωtdt

=
ω

ω − (βs+ s2/2)
. (7)

The result in (5) then follows from

ω

ω − (βs+ s2/2)
=

γ1γ2

(γ1 − s)(γ2 + s)
, (8)

with γ1, γ2 as in (6), and Lévy’s continuity theorem for Laplace transforms [16].
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The random walk for which the increments are distributed as the difference of two expo-
nentials has been thoroughly studied in the literature. The maximum of this random walk is
known to be equal in distribution to the stationary waiting time in a so-called M/M/1 queue
with arrival rate γ1 and service rate γ2, for which (see e.g. [2, p. 108])

P(Mβ(ω) > x) =
γ1

γ2
e−(γ2−γ1)x, x ≥ 0. (9)

This implies that

EMβ(ω) =
γ1

γ2

1
γ2 − γ1

, (10)

from which it readily follows that

E∆β(ω) =
1√
2ω

+O(ω−1) (11)

with 1/
√

2 ≈ 0.7071. A similar result was obtained in [6, Thm. 3] for a Brownian motion in a
finite time interval sampled at uniformly distributed points.

2.3 Erlangian sampling

We now set T d=Ek(kω) with mean ω−1 and variance 1/(kω2). Clearly, random sampling (k = 1)
and equidistant sampling (k = ∞) can be seen as special cases. We first make the following
observation.

Lemma 2.2. If T d=Ek(kω) then

Bβ(T ) d=Ek(γ2)− Ek(γ1), (12)

where
γ1 = −β +

√
β2 + 2kω, γ2 = β +

√
β2 + 2kω. (13)

Proof. We know that for βs+ s2/2 < kω (see the proof of Lemma 2.1)

E(e−sBβ(E1(kω))) =
kω

kω − (βs+ s2/2)

=
γ1γ2

(γ1 − s)(γ2 + s)
. (14)

Hence,

E(e−sBβ(T )) =
(

γ1

γ1 − s

)k ( γ2

γ2 + s

)k
, (15)

which completes the proof.

From Lemma 2.2 we conclude that in order to study an Erlangian sampled Brownian mo-
tion, we need to study a random walk with increments defined as the difference of two Erlang
distributed random variables. As it happens, this random walk has been studied before, and
an explicit solution for the distribution of Mβ(ω) is available. In order to explain this, we need
to make a small excursion into the world of fluctuation theory. We start from the observation
that Mβ(ω) d=W with

W
d= max{0,W +Bβ(T )}. (16)
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This equation is a special case of Lindley’s equation, describing the stationary waiting time of
a customer in the GI/G/1 queue. The case in (16) describes a single-server queue with Erlang
distributed service times and Erlang distributed interarrival times. In [1] it was shown that the
distribution of W can be expressed as a finite sum of exponentials, the exponents of which are
the roots of an equation that involves the Laplace transform of the Erlang distribution. This
gives the result [1, Corollary 3.3]

P(Mβ(ω) > t) =
k∑
j=1

cjσje
−γ2(1−σj)t, t ≥ 0. (17)

Here,

cj =

∏k−1
l=0,l 6=j (σl − 1)∏k−1

l=0,l 6=j(σl/σj − 1)
, j = 0, 1, ..., k − 1, (18)

and σ0, . . . , σk−1 the k roots in |σ| < 1 of

P (σ) := [σ(1 + ρ− σ)]k − ρk = 0 , (19)

where
ρ = 1− 2β

γ2
, (20)

so that 1
γ2

= 1−ρ
2β and

k(1− ρ)2 ω = 2β2ρ . (21)

The σj are given explicitly as

σj = 1
2 (1 + ρ)−

√
(1
2 (1 + ρ))2 − ρe2πij/k , j = 0, 1, ..., k − 1 . (22)

The expected all-time maximum then equals

EMβ(ω; k) =
k−1∑
j=0

cjσj
γ2(1− σj)

, (23)

and it is this expression that forms the point of departure for this paper.

2.4 Overview of the results

In the coordinates ρ, k, ω and β, related according to (13), (20), and (21), we obtain a limit
result for EMβ(ω; k) in the case that ω → ∞ and k bounded or unbounded, and in the case
that ω → 0 and k →∞. In this paper, we do not address the intriguing question what happens
when ω tends to a non-zero finite limit and k →∞.

In Section 3 we start from (23) and show that when ω →∞ and k is bounded,

EMβ(ω; k) =
1

2β
− 1√

2ωk

(
k −

k−1∑
j=1

1√
1− uj

)
+O(ω−1) , (24)

where
uj = e2πij/k , j = 0, 1, ..., k − 1 (25)

denote the k unit roots. Notice that the case k = 1 is in line with (11).
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In Section 4 we determine the asymptotic behavior of the series

k−1∑
j=1

(1− uj)−s (26)

when s ∈ R is fixed and k → ∞. We use for this a method developed by Brauchart et al. [4]
based on the Euler-Maclaurin summation formula. In particular, our results imply that

1√
2k

(
k −

k−1∑
j=1

1√
1− uj

)
=
−ζ(1/2)√

2π
− π1/2 ζ(−1/2)

2
√

2
1
k

+O
( 1
k2

)
. (27)

Notice that for k →∞ this agrees with the result in (4).
In Section 3 the result (24) is proved for the case that k remains bounded (Theorem 3.1).

The proof of Theorem 3.1 is relatively simple and uses the direct representation in (18) of
the cj ’s as they occur in the series expression (23). A key observation in this proof is that
the term with j = 0 in the series representation dominates all other terms. The result (24)
comprises the quantity k −

∑k−1
j=1(1 − uj)−1/2 for which the asymptotic behavior as k → ∞ is

given (Theorem 4.1) in terms of the Riemann zeta function by (27), using an approach based
on Euler-MacLaurin summation. It is therefore a relevant question to ask whether (24) also
holds with O(ω−1) holding uniformly in k ≥ 1. The approach to prove (24) for unbounded
k using the direct representation (18) of the cj is severely complicated by the fact that, as
k → ∞ and ω → ∞, the k zeros of P in (19) inside the unit circle accumulate on the set
{1−

√
1− u | |u| = 1}, so that the quantities σl/σj − 1, l 6= j, that occur in (18), can become

arbitrarily small. In a situation like this it may be advantageous, as exemplified on several
occasions in N.G. de Bruijn’s Asymptotic Methods in Analysis, to view the problem at hand
from a different perspective. In this spirit, we use a different representation of the cj ’s, viz. one
in which factors σ−l /σ

+
j − 1 (rather than σ−l /σ

−
j − 1) appear with σ− and σ+ the zeros of P

inside and outside the open unit disk |σ| < 1, respectively (Lemma 5.1). This new representation
gives bounds on cj (Theorems 5.3 and 5.4) from which we can conclude that also in the case of
unbounded k, the term with j = 0 in the representation (23) is dominant when ω → ∞. The
proofs of Theorems 5.3 and 5.4 rely heavily on Lemma 5.2 that gives bounds on the products∏k−1
l=0 (1−σ−l /σ

+
j ) that appear in the new representation of the cj . In the proof of Lemma 5.2 a

crucial role is played by the result that expresses a series
∑k−1

j=0 h(uj), with h(z) =
∑∞

n=0 dnz
n

analytic in an open set containing the closed unit disk, in terms of the decimated coefficients dsk,
k = 0, 1, . . . (Fourier sampling). In proving the extension of (24) to unbounded k (Theorem 6.1),
due to the results of Section 5, attention can thus be restricted to the term with j = 0 in (23),
making the proof rather straightforward.

In Section 7 we consider the behavior of EMβ(ω; k) as ω → 0 and k → ∞ (the case that
ω → 0 while k remains bounded yields EMβ(ω; k)→ 0 in a trivial manner from (18)-(23). Then
the term with j = 0 in (23) is no longer dominant, and it can be shown from the results of
Section 5 that EMβ(ω; k) is well approximated, see the proof of Theorem 7.1, by

1− ρ
2βk

k−1∑
j=0

(1 + ρ− σj)σj
(1− σj)2(1 + ρ− 2σj)

. (28)

The series in (28) can be cast into the form
∑k−1

j=0 F (uj), with F analytic in an open set
containing the closed unit disk and F (0) = 0. To this series, the Fourier sampling technique,
as it occurs in the proof of Lemma 5.2, can be applied. It thus follows that EMβ(ω; k) tends to
zero when ω → 0 and k →∞, and k, ω related as in (21) with fixed β > 0, and also the rate at
which EMβ(ω; k) tends to zero can be determined.
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3 Behavior of EMβ(ω; k) for bounded k and ω →∞
We prove in this section the following result.

Theorem 3.1. Let k = 1, 2, ... . As ω →∞,

EMβ(ω; k) =
1

2β
− 1√

2ωk

(
k −

k−1∑
j=1

1√
1− uj

)
+O(ω−1) , (29)

where uj are given as exp(2πij/k), j = 1, ..., k − 1.

Proof. We use the series expression (23) for EMβ(ω; k). We have from (13) and (20) that
1− ρ = O(ω−1/2), and so from (22)

1− σj = 1
2 (1− ρ) +

√
1− uj − (1− ρ)(1− uj) + (1

2 (1− ρ))2

=
√

1− uj +O
( 1
ω1/2

)
, j = 0, 1, ..., k − 1 . (30)

In particular, 1 − σ0 = O(ω−1/2) while 1 − σj is bounded away from 0 for j = 1, ..., k − 1 as
ω →∞. Then, from (18) and 1− ρ = O(ω−1/2), as ω →∞

c0 =
∏k−1
l=1 (σl − 1)∏k−1
l=1

(σl
ρ
− 1
) → 1 , (31)

while for j = 1, ..., k − 1

cj
1− ρ

= −
k−1∏

l=1,l 6=j
(σl − 1) /

k−1∏
l=0,l 6=j

(σl
σj
− 1
)

(32)

has a finite limit 6= 0 as ω → ∞. We conclude from ρ = σ0, (31), (32) and 1 − ρ = O(ω−1/2)
that, as ω →∞,

EMβ(ω; k) =
k−1∑
j=0

cjσj
γ2(1− σj)

=
1
γ2

c0ρ

1− ρ
+O(ω−1) . (33)

To proceed, we need to approximate c0 accurately. From the identity in the first line of (30) we
find for j = 1, ..., k − 1

σj = 1− 1
2(1− ρ)−

√
1− uj (1− 1

2(1− ρ) +O((1− ρ)2))

= 1−
√

1− uj + 1
2 (
√

1− uj − 1)(1− ρ) +O((1− ρ)2) . (34)

This gives, see (31),

ρ c0 = ρk
k−1∏
j=1

1− σj
ρ− σj

= ρk
k−1∏
j=1

√
1− uj − 1

2 (
√

1− uj − 1)(1− ρ) +O((1− ρ)2)√
1− uj − 1

2(
√

1− uj + 1)(1− ρ) +O((1− ρ)2)

= ρk
(

1 +
k−1∑
j=1

1− ρ√
1− uj

)
+O((1− ρ)2)
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= 1− (1− ρ)
(
k −

k−1∑
j=1

1√
1− uj

)
+O((1− ρ)2) , (35)

where it has been used that ρk = 1 − (1 − ρ) k + O((1 − ρ)2). Using this in (33) while noting
that γ2(1− ρ) = 2β and that 1

γ2
= 1√

2ωk
+O(ω−1), we obtain the result.

The proof of Theorem 3.1 shows that the term with j = 0 in the series (23) dominates
all other terms when ω → ∞ and k remains bounded. We establish a similar result more
generally, allowing k to be unbounded as well, in Section 6, and extend the result of Theorem 3.1
accordingly.

4 Asymptotics of
∑k−1

j=1 (1− uj)−s as k →∞ for fixed s

The large-ω expression in Theorem 3.1 for EMβ(ω; k) contains the series
∑k−1

j=1 (1− uj)−s with
s = 1/2. It is of interest to find out how this series behaves with increasing k. Furthermore,
in Section 6, we consider the case that ω →∞ with unbounded k allowed, and then it appears
that the behavior of the series

∑k−1
j=1 (1 − uj)−s for large k is required to be known for s =

1/2, 1, 3/2, ... .
We adopt an approach in [4], for determining the asymptotic behavior of

Sk(s) :=
k−1∑
j=1

(1− uj)−s , uj = e2πij/k , (36)

as k →∞ and s ∈ R is fixed. In [4] this approach is used for finding the asymptotic behavior of

Uk(s) :=
k−1∑
j=1

(
sin

πj

k

)−s
(37)

as k →∞ and s ∈ C is fixed. The result that we obtain here for Sk(s) is of the same nature as
the result for Uk(s) in [4], except that in our result, Theorem 4.1 below, all terms

ζ(s− l) ks−l , l = 0, 1, ... , (38)

occur, while the result in [4] has only terms (38) with even l. Furthermore, the exceptional
cases s = 1, 2, ... are less complicated for our Sk(s) than they are for Uk(s) in [4].

The method in [4] is a fine application of the Euler-Maclaurin summation formula that can
be found, along with various applications, in [5, Secs. 3.6–10]. We take s ∈ R in (36) and this
implies that the terms tj in (36) satisfy tk−j = t∗j , j = 1, ..., k − 1. Hence, Sk(s) is real, and so
we have

Sk(s) =
k−1∑
j=1

fk(j) , (39)

where
fk(x) = Re [(1− e2πix/k)−s] . (40)

Expanding ( z

ez − 1

)s
=
∞∑
l=0

B
(s)
l (0)
l!

zl , |z| < 2π , (41)
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with B
(s)
l the generalized Bernoulli polynomials, as in [4, Sec. 1], we get

fk(x) =
∞∑
l=0

βl(s)
(x
k

)l−s
, |x| < k , (42)

where

βl(s) =
(2π)l−sB(s)

l (0)
l!

cos(l + s)
π

2
, l = 0, 1, ... . (43)

Remember that ζ denotes the Riemann zeta function.

Theorem 4.1. Let s ∈ R and let p = 0, 1, ... such that s+ 2p > 0. Then, as k →∞,

Sk(s) =


k + 2

2p∑
l=0

βl(s) ζ(s− l) ks−l +Os,p(ks−2p−1) , s 6= 1, 2, ... ,

1
2k + 2

2p∑
l=0,l 6=s−1

βl(s) ζ(k − l) ks−l +Os,p(ks−2p−1) , s = 1, 2, ... ,

(44)

where the constants implied by the Os,p depend on s and p but not on k.

Proof. We closely follow the approach in [4], so that many of the details are left out. We have
for f ∈ C2p+1([1,m]) that

m∑
j=1

f(j) =

m∫
1

f(x) dx+ 1
2 (f(1) + f(m))

+
p∑
r=1

B2r

(2r)!
(f (2r−1)(m)− f (2r−1)(1)) +

m∫
1

f (2p+1)(x)
C2p+1(x)
(2p+ 1)!

dx , (45)

where C2p+1(x) = B2p+1(x− [x]) is the periodized Bernoulli polynomial and B2r is the Bernoulli
number. Using this with m = k − 1 and f = fk, see (40), and noting that fk(k − x) = fk(x),
we get

Sk(s) =
k−1∑
j=1

fk(j)

= 2

k/2∫
1

fk(x) dx+fk(1)−2
p∑
r=1

B2r

(2r)!
f

(2r−1)
k (1)+2

k/2∫
1

f
(2p+1)
k (x)

C2p+1(x)
(2p+ 1)!

dx . (46)

All quantities on the second line of (46) involving fk can be expressed in terms of the βl(s) in
(42–43). In particular, we get

2

k/2∫
1

fk(x) dx = k − 2
∞∑
l=0

βl(s)
ks−l

l − s+ 1
, (47)

where it has been used that for s ∈ R, s < 1

2

1/2∫
0

Re
[ 1

(1− e2πiy)s
]
dy =

1∫
0

dy

(1− e2πiy)s
= 1 (48)
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and that the same analyticity considerations as in [4, Subsec. 2.1] apply. In (47) we have to
consider the cases that s = 1, 2, ... separately because of the term l = s − 1; this will be done
below.

We find, after using (42–43) in (46) that for s 6= 1, 2, ...

Sk(s) = k + 2
∞∑
l=0

βl(s)
{ 1
s− l + 1

+ 1
2 +

p∑
r=1

B2r

(2r)!
(s− l)2r−1

− (s− l)2p+1

k/2∫
1

xl−s−2p−1 C2p+1(x)
(2p+ 1)!

dx
}
, (49)

where (a)n is Pochhammer’s symbol. The expressions in {. . .} at the right-hand side of (49) are
identified in [4, Subsec. 2.2] as incomplete zeta functions ζy,p(t) with y = k/2 and t = s− l, for
which

|ζy,p(t)− ζ(t)| = Ot,p(y−t−2p) , y > 0 . (50)

Hence, for s 6= 1, 2, ... and any p = 0, 1, ...

Sk(s) = k + 2
∞∑
l=0

βl(s) ζk/2,p(s− l) ks−l . (51)

In the case that s = K = 1, 2, ... , we take the limit s→ K in (51), using the result, to be proved
below,

lim
s→K

βK−1(s)
s−K

= − 1
4 . (52)

Note that βK−1(K) = 0, due to the factor cos(l+ s) π2 at the right-hand side of (43). Hence, we
get for s = K = 1, 2, ...

Sk(K) = 1
2k + 2

∞∑
l=0,l 6=K−1

βl(K) ζk/2,p(K − l) kK−l . (53)

Finally, taking any p = 0, 1, ... with s + 2p > 0, we can use (50) to conclude the proof in the
same way as the proof in [4] for Uk(s) in (37) is concluded in [4, Section 4].

We still have to show (52). From (43) we have for K = 1, 2, ...

lim
s→K

βK−1(s)
s−K

= 1
4 (−1)K

B
(K)
K−1(0)

(K − 1)!
, (54)

where B(K)
K−1(0)/(K−1)! is the coefficient of zK−1 in (z/(ez−1))K . Thus, we have for 0 < r < 2π

B
(K)
K−1(0)

(K − 1)!
=

1
2πi

∫
|z|=r

1
zK

( z

ez − 1

)K
dz

=
1

2πi

∫
|z|=r

( 1
ez − 1

)K
dz =

1
2πi

∫
Cr

1
wk

1
1 + w

dw = (−1)K−1 ,

(55)

where the substitution w = ez − 1, dz = dw/(1 + w) has been used and Cr is the image under
the mapping |z| = r 7→ ez−1 (which is easily seen, for small r > 0, to be a Jordan curve having
the origin w = 0 in its interior). This shows (52).
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Note 4.2. The result in (27) can be obtained by taking s = 1/2, p = 1 in (44), using that

β0(1/2) =
1

2
√
π
, β1(1/2) =

√
π

4
, β2(1/2) = −π

3/2

48
. (56)

Note 4.3. In the lower case in (44) a simplification occurs since for s = 1, 2, . . .

βl(s) = 0 , k − l odd ; ζ(s− l) = 0 , l = s+ 2, s+ 4, ... . (57)

This leads to

Sk(s) = 1
2k +

[ 1
2
s]∑

r=0

βs−2r(s) ζ(2r) k2r +Os,p(ks−2p−1) . (58)

A similar situation as in Note 4.3 occurs in [4, Remark 1.2] for the case of Uk(s) in (37) with
s = 2, 4, ... . It is concluded in [4] that one gets exact formulas for Uk(s) in that case. While
this is true, see [13], the argument in [4] is incomplete. In the case of Sk(s) with s = 1, 2, . . ., it
can be shown that it depends polynomially on k (degree ≤ s), and so (58) holds exactly with
the Os,p deleted.

5 Bounds on cj from a representation using outer zeros

When k is allowed to be unbounded, the analysis of EMβ(ω; k) using the series in (23) with the
cj given by (18) is awkward. In this section, we present an alternative representation of the cj ,
using the zeros of P in (19) outside |σ| < 1, that is more convenient for getting bounds.

For j = 0, 1, ..., k − 1 , we let

σ±j = 1
2 (1 + ρ)±

√
(1
2 (1 + ρ))2 − ρ e2πij/k (59)

be the two solutions of the equation

σ(1 + ρ− σ) = ρ e2πij/k . (60)

Then for j = 1, ..., k − 1
|σ−j | < σ−0 = ρ < 1 = σ+

0 < |σ+
j | , (61)

and
σ−j + σ+

j = 1 + ρ ; σ−j σ
+
j = ρ e2πij/k . (62)

When we let

σj = σ−j , j = 0, 1, ..., k − 1 ; σj+k = σ+
j , j = 0, 1, ..., k − 1 , (63)

then σj , j = 0, 1, ..., 2k − 1 are the 2k zeros of P in (19).

Lemma 5.1. For j = 0, 1, ..., k − 1,

cj =
1
k

1 + ρ− σj
(1− σj)(1 + ρ− 2σj)

k−1∏
l=0

(1− σl)
k−1∏
l=0

(
1− σl

σ+
j

)
. (64)
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Proof. We have from (18) that

cj =
σk−1
j

1− σj

∏k−1
l=0 (1− σl)∏k−1

l=0,l 6=j (σj − σl)
. (65)

We re-express the product in the denominator at the right-hand side of (65). There holds

P (σ) = (σ(1 + ρ− σ))k − ρk = (−1)k
k−1∏
l=0

(σ − σ−l )
k−1∏
l=0

(σ − σ+
l ) . (66)

Hence, for j = 0, 1, ..., k − 1 from (63)

P ′(σj) = (−1)k
k−1∏

l=0,l 6=j
(σj − σl)

k−1∏
l=0

(σj − σ+
l ) . (67)

On the other hand,

P ′(σj) = (σk(1 + ρ− σ)k − ρk)′(σj) = k ρk
1 + ρ− 2σj
σj(1 + ρ− σj)

. (68)

Hence, for j = 0, 1, ..., k − 1 ,

k−1∏
l=0,l 6=j

(σj − σl) =
(−1)k P ′(σj)∏k−1
l=0 (σj − σ+

l )

= (−1)k k ρk
1 + ρ− 2σj
σj(1 + ρ− σj)

1∏k−1
l=0 (σj − σ+

l )
. (69)

Next, by the first item in (63), σj − σ+
l = −(σ+

j − σl), and so

k−1∏
l=0,l 6=j

(σj − σl) = k ρk
1 + ρ− 2σj
σj(1 + ρ− σj)

1∏k−1
l=0 (σ+

j − σl)
. (70)

Using (70) in (65), we get

cj =
1
k

(σj/ρ)k (1 + ρ− σj)
(1− σj)(1 + ρ− 2σj)

k−1∏
l=0

(1− σl)
k−1∏
l=0

(σ+
j − σl) . (71)

Finally, take out k factors σ+
j from the last product at the right-hand side of (71), and use, see

(62),
(σjσ+

j /ρ)k = (σ−j σ
+
j /ρ)k = 1 (72)

to obtain the result.

We now analyze the product
∏k−1
l=0 (1 − σl/σ+

j ) of which
∏k−1
l=0 (1 − σl) is the special case

with j = 0.

Lemma 5.2. For j = 0, 1, ..., k − 1,

k−1∏
l=0

(
1− σl

σ+
j

)
= exp(gj(ρ)) , (73)

where
Re(gj(ρ)) < 0 , |gj(ρ)| < −1

2 ln
(

1−
( 4ρ

(1 + ρ)2
)k)

. (74)
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Proof. We have
k−1∏
l=0

(
1− σl

σ+
j

)
= exp

(
−k lnσ+

j +
k−1∑
l=0

ln(σ+
j − σl)

)
. (75)

Now

ln(σ+
j − σl) = ln

[√
a2 − ρ e2πij/k +

√
a2 − ρ e2πil/k

]
= ln

[
1− aj +

√
a2 − ρ ul

]
, (76)

where we have set

a = 1
2 (1 + ρ) , 1− aj =

√
a2 − ρ e2πij/k , ul = e2πil/k . (77)

Hence
ln(σ+

j − σl) = hj(ul) , (78)

where
hj(u) := ln

[
1− aj +

√
a2 − ρu

]
, |u| ≤ a2/ρ . (79)

Note that
τ :=

ρ

a2
=

4ρ
(1 + ρ)2

= 1−
(1− ρ

1 + ρ

)2
∈ (0, 1) . (80)

Furthermore, 1− aj +
√
a2 − ρu has positive real part when |u| ≤ a2/ρ = τ−1, and so hj(u) is

analytic in an open set containing the closed unit disk. There is the power series representation

hj(u) =
∞∑
n=0

dn(j) ρn un , |u| ≤ a2/ρ , (81)

in which dn(j) are the power series coefficients of ln [1− aj +
√
a2 − z].

From all this we get

k−1∑
l=0

ln(σ+
j − σl) =

k−1∑
l=0

hj(e2πil/k) = k
∞∑
s=0

dks(j) ρks , (82)

where it has been used that

k−1∑
l=0

e2πinl/k =

{
k , n = 0, k, 2k, ...,

0 , otherwise .
(83)

Noting that d0(j) = hj(0) = lnσ+
j , we then see from (75) that

k−1∏
l=0

(
1− σl

σ+
j

)
= exp

(
k

∞∑
s=1

dks(j) ρks
)

=: exp(gj(ρ)) . (84)

We analyze the dn(j), n = 1, 2, ... , in some detail. We have by Cauchy’s theorem for
n = 1, 2, ...

dn(j) =
1

2πi

∫
|z|=r

ln(1 + aj −
√
a2 − z)

zn+1
dz (85)
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when 0 < r < a2. We deform the integration contour |z| = r so as to enclose the branch cut of√
a2 − z from z = a2 to z = +∞. Now, for x > a2, we have√

a2 − (x± i0) = ∓ i
√
x− a2 , (86)

and so we get for n = 1, 2, ...

dn(j) =
1

2πi

∞∫
a2

[
ln(1− aj − i

√
x− a2)− ln(1− aj + i

√
x− a2)

] dx

xn+1
. (87)

By partial integration, noting that the quantity in [. . .] at the right-hand side of (87) vanishes
at x = a2, we get

dn(j) =
−1
2πn

∞∫
a2

1
2
√
x− a2

[ 1
1− aj − i

√
x− a2

+
1

1− aj + i
√
x− a2

] dx
xn

=
−(1− aj)

2πn

∞∫
a2

1√
x− a2

1
(1− aj)2 + x− a2

dx

xn
(88)

for n = 1, 2, ... . Finally, setting u2 = x− a2 ≥ 0, we get

dn(j) = − 1− aj
πn

∞∫
0

1
(1− aj)2 + u2

1
(u2 + a2)n

du . (89)

By the substitutions t = u/a and v = t b
1/2
j , the result (89) can be brought into the forms

dn(j) =
−1

π na2n

∞∫
0

b
1/2
j

1 + bj t2
dt

(1 + t2)n

=
−1

π na2n

∞∫
0

1
1 + v2

dv

(1 + v2/bj)n
, n = 1, 2, ... , (90)

where we have set bj = (a/(1− aj))2, so that

1
bj

= 1− 4ρ
(1 + ρ)2

e2πij/k (91)

is in the right-half plane.
We now show that Re dn(j) < 0. We have for t2 = x ≥ 0 and b ∈ C, Re b > 0 that

Re
( b1/2

1 + bx

)
= Re

( b−1/2

b−1 + x

)
> 0 . (92)

Then Re dn(j) < 0 follows from (90) and Re b−1
j > 0. From (84) it is then seen that Re gj(ρ) < 0,

and the first item in (74) is proved.
Next, we have from Re b−1

j > 0 that |1 + v2/bj | > 1 for all v > 0. Hence, from (90),

|dn(j)| < 1
2na2n

, n = 1, 2, ... . (93)
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From (84) it is then see that

|gj(ρ)| < k
∞∑
s=1

ρks

2ksa2ks
= − 1

2 ln
(

1−
( ρ
a2

)k)
, (94)

and noting that a = 1
2(1 + ρ), this gives the second item in (74).

The following result follows immediately from Lemmas 5.1 and 5.2.

Theorem 5.3. For j = 0, 1, ..., k − 1,

|cj | ≤
1
k

∣∣∣ 1 + ρ− σj
(1− σj)(1 + ρ− 2σj)

∣∣∣ , (95)

and

cj =
1
k

1 + ρ− σj
(1− σj)(1 + ρ− 2σj)

(
1 +O

( τk

1− τk
))

(96)

where τ = 4ρ/(1 + ρ)2 and the constant implied by O in (96) is bounded by 1.

Another inequality for cj , j = 1, ..., k − 1 , is the following one.

Theorem 5.4. For j = 1, 2, ..., [k2 ] =: m,

|cj | = |ck−j | ≤
(1− ρ)

√
k

j
(1 +

√
2) c1/20 . (97)

Proof. We have from σk−j = σ∗j , j = 1, ..., k − 1 , that ck−j = c∗j , j = 1, ..., k − 1 , and this gives
|cj | = |ck−j |, j = 1, ...,m.

From Lemma 5.1 with j = 0 we have

c0 =
1
k

k−1∏
l=1

(1− σl)2 . (98)

Therefore, as σ0 = ρ,

1
k

k−1∏
l=0

(1− σl) =
1− ρ√
k

( 1
k

k−1∏
l=1

(1− σl)2
)1/2

=
1− ρ√
k
c
1/2
0 . (99)

Furthermore, from Lemma 5.2 for j = 1, 2, ..., k − 1

∣∣∣k−1∏
l=0

(
1− σl

σ+
j

)∣∣∣ ≤ 1 , (100)

and so from Lemma 5.1

|cj | ≤
∣∣∣ 1 + ρ− σj
(1− σj)(1 + ρ− 2σj)

∣∣∣ 1− ρ√
k
c
1/2
0 . (101)

Next, we show that for j = 1, 2, ...,m

|1− σj | ≥
( j

2k

)1/2
, |1 + ρ− 2σj | ≥ 2

( j
2k

)1/2
, |1 + ρ− σj | ≤ 1 +

√
2 . (102)
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We have with t = 2πj/k ∈ (0, π]

1− σj = 1
2(1− ρ) +

√
(1
2(1 + ρ))2 − ρ eit , (103)

1 + ρ− 2σj = 2
√

(1
2(1 + ρ))2 − ρ eit , (104)

1 + ρ− σj = 1
2(1 + ρ) +

√
(1
2(1 + ρ))2 − ρ eit . (105)

Now

Re
[√

(1
2(1 + ρ))2 − ρ eit

]
> 0 ,

∣∣∣√(1
2(1 + ρ))2 − ρ eit

∣∣∣ ≤√(1
2(1 + ρ))2 + ρ , (106)

and so

|1− σj | ≥ |(1
2(1 + ρ))2 − ρ eit|1/2 , |1 + ρ− 2σj | ≥ 2|(1

2(1 + ρ))2 − ρ eit|1/2 (107)

while, as 0 ≤ ρ ≤ 1,

|1 + ρ− σj | ≤ 1
2(1 + ρ) +

√
(1
2(1 + ρ))2 + ρ ≤ 1 +

√
2 , (108)

which establishes the third inequality in (102). For the first two inequalities in (102), we compute

|(1
2(1 + ρ))2 − ρ eit|2 = (1

2(1 + ρ))4 − 2ρ(1
2(1 + ρ))2 cos t+ ρ2

= (1
2(1− ρ))4 + 2ρ(1

2(1 + ρ))2(1− cos t)
= (1

2(1− ρ))4 + ρ(1 + ρ)2 sin2 1
2 t ≥ (1

2(1− ρ))4 + ρ(1 + ρ)2(t/π)2 ,
(109)

where the inequality sinx ≥ 2x/π, 0 ≤ x ≤ π/2 has been used. Now for 0 < y ≤ 1 and
0 ≤ ρ ≤ 1

(1
2(1− ρ))4

y2
+ ρ(1 + ρ)2 ≥ (1

2(1− ρ))4 + ρ(1 + ρ)2 ≥ ((1
2(1 + ρ))2 + ρ)2 ≥ (1

2)4 , (110)

and so we get

|(1
2(1 + ρ))2 − ρ eit|2 ≥ (1

2)4
( t
π

)2
, 0 ≤ t ≤ π . (111)

This yields the first two inequalities in (102), and then the result follows from (101).

6 Extension of Theorem 3.1

In this section we show the following extension of Theorem 3.1.

Theorem 6.1. For fixed β > 0,

EMβ(ω; k) =
1

2β
−
( 1

2kω

)1/2(
k −

k−1∑
j=1

1√
1− uj

)
+O(ω−1) , ω →∞ , (112)

where O holds uniformly in k = 1, 2, ... .
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Proof. We first show that we can restrict attention to the term j = 0 in the series (23) for
EMβ(ω; k). We have by (20)

∣∣∣k−1∑
j=1

cjσj
γ2(1− σj)

∣∣∣ =
∣∣∣1− ρ

2β

k−1∑
j=1

cjσj
1− σj

∣∣∣ ≤ 1− ρ
β

m∑
j=1

∣∣∣ cjσj
1− σj

∣∣∣ , (113)

where m = [12k] and where it has been used that ck−j = c∗j , σk−j = σ∗j , j = 1, 2, ..., k − 1. Now
Theorem 5.4 and (102) give

1− ρ
β

m∑
j=1

∣∣∣ cjσj
1− σj

∣∣∣ ≤ 1− ρ
β

(1 +
√

2) c1/20

m∑
j=1

(1− ρ)

√
k

j

(2k
j

)1/2

≤
√

2 + 2
β

c
1/2
0 ζ(3

2)(1− ρ)2k = (
√

2 + 2)c1/20 ζ(3
2)

2βρ
ω

, (114)

where (21) has been used in the last step. Hence,

EMβ(ω; k) =
c0ρ

2β
+ c

1/2
0 β O(ω−1) , (115)

where the constant implied by O is bounded by 2(
√

2 + 2)ζ(3
2).

We now bound and approximate c0. We have from Lemma 5.1 with j = 0

c0 =
1
k

k−1∏
j=1

(1− σj)2 . (116)

Furthermore, there is the approximation, see Appendix

1− σj =
√

1− uj
(

1− ε
(

1− 1√
1− uj

)
+O

( (1− ρ)3√
1− uj

))
(117)

with ε = 1
2(1− ρ) + 1

8(1− ρ)2, and

|
√

1− uj | = |
√

1− uk−j | ≥ 2(j/k)1/2 , j = 1, 2, ...,m . (118)

We furthermore have from uj = exp(2πij/k) that

1
k

k−1∏
j=1

(1− uj) =
2k−1

k

k−1∏
j=1

sin
πj

k
= 1 , (119)

see [4], (1.11) for the last identity. From all this we get

c0 =
k−1∏
j=1

(
1− ε

(
1− 1√

1− uj

)
+O

( (1− ρ)3√
1− uj

))
. (120)

Next, from (118) and ε = O(1− ρ), we see that

ε
(

1− 1√
1− uj

)
= O

( 1√
ω

)
(121)

uniformly in j = 1, 2, ..., k − 1 . Hence

c0 =
k−1∏
j=1

(
1− ε

(
1− 1√

1− uj

))2
·
(

1 +O
( m∑
j=1

∣∣∣ (1− ρ)3√
1− uj

∣∣∣)) . (122)
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Now by (118) and m = [12k]

(1− ρ)3
m∑
j=1

∣∣∣ 1√
1− uj

∣∣∣ ≤ 1
2 k

1/2(1− ρ)3
m∑
j=1

1
j1/2

≤ 1
2 k

1/2(1− ρ)3 2(1
2 k)1/2 = 1

2 k(1− ρ)3
√

2 = O
( 1
ω3/2k1/2

)
. (123)

Hence
c0 = ĉ0

(
1 +O

( 1
ω3/2k1/2

))
(124)

with

ĉ0 =
k−1∏
j=1

(
1− ε

(
1− 1√

1− uj

))2

= exp
(

2
k−1∑
j=1

ln
(

1− ε
(

1− 1√
1− uj

)))
. (125)

We develop

k−1∑
j=1

ln
(

1− ε
(

1− 1√
1− uj

))
= −ε

k−1∑
j=1

(
1− 1√

1− uj

)

−1
2ε

2
k−1∑
j=1

(
1− 1√

1− uj

)2
+O

[
ε3

k−1∑
j=1

∣∣∣1− 1√
1− uj

∣∣∣3] . (126)

From
k−1∑
j=1

(
1− 1√

1− uj

)
= O(

√
k) ,

k−1∑
j=1

1
1− uj

= 1
2(k − 1) (127)

(see (27) for the first item in (127) and use Theorem 4.1 or proceed directly for the second item
in (127)) we have

k−1∑
j=1

(
1− 1√

1− uj

)2
= O(k) . (128)

Finally, from (118) we have

k−1∑
j=1

∣∣∣1− 1√
1− uj

∣∣∣3 = O
(
k3/2

m∑
j=1

j−3/2
)

= O(k3/2). (129)

Using (126–129) in (125), we get

ĉ0 = 1− 2ε
k−1∑
j=1

(
1− 1√

1− uj

)
+O(ε2 k) +O(ε3 k3/2)

= 1− (1− ρ)
k−1∑
j=1

(
1− 1√

1− uj

)
+O(ω−1) +O(ω−3/2) , (130)

where we have used that 2ε = 1− ρ+O((1− ρ)2) and that k(1− ρ)2 = O(ω−1), see (21).
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Using (130) and (124) in (115), we get

EMβ(ω; k) =
ĉ0ρ

2β
+O(ω−1)

=
ρ

2β

(
1− (1− ρ)

k−1∑
j=1

(
1− 1√

1− uj

))
+O(ω−1)

=
1

2β
− 1− ρ

2β

(
1 + ρ

k−1∑
j=1

(
1− 1√

1− uj

))
+O(ω−1)

=
1

2β
− 1− ρ

2β

(
k −

k−1∑
j=1

1√
1− uj

)
+O(ω−1) (131)

where (127) has been used in the last step to replace the ρ in front of
∑

j by 1 at the expense
of an error O((1− ρ)2

√
k) = O(ω−1). Since by (21)

1− ρ
2β

=
ρ1/2

√
2kω

=
1√
2kω

+O
( 1
kω

)
, (132)

we get the result.

7 Behavior of EMβ(ω; k) as ω → 0 and k →∞
In this section we show the following result.

Theorem 7.1. Assume that β > 0 is fixed and that ω → 0 and k →∞. Then EMβ(ω; k)→ 0.

Proof. By Theorem 5.3

cj =
1
k

1 + ρ− σj
(1− σj)(1 + ρ− 2σj)

(1 + εj,k(ρ)) , (133)

where for all k = 1, 2, ... and all j = 0, 1, ..., k − 1

|εj,k(ρ)| ≤ τk

1− τk
; τ =

4ρ
(1 + ρ)2

= 1−
(1− ρ

1 + ρ

)2
. (134)

We have by (21)

k(1− ρ)2 =
2ρβ2

ω
→∞ , (135)

and so

τk ≤ exp
(−k(1− ρ)2

(1 + ρ)2
)
→ 0 . (136)

Now by (23), (20) and (133)

EMβ(ω; k) =
1− ρ

2β

k−1∑
j=0

1
k

(1 + ρ− σj)σj
(1− σj)2(1 + ρ− 2σj)

+
ρ ε0,k(ρ)

2βk(1− ρ)2
+

1− ρ
2βk

k−1∑
j=1

(1 + ρ− σj)σj εj,k(ρ)
(1− σj)2(1 + ρ− 2σj)

. (137)
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The second term on the right-hand side of (137) tends to 0 by (134), (135), (136). As to the
third term on the right-hand side of (137), we estimate∣∣∣1− ρ

2βk

k−1∑
j=1

(1 + ρ− σj)σj εj,k(ρ)
(1− σj)2(1 + ρ− 2σj)

∣∣∣
≤ (1− ρ)τk

2βk(1− τk)

k−1∑
j=1

∣∣∣ (1 + ρ− σj)σj
(1− σj)2(1 + ρ− 2σj)

∣∣∣
≤ (1− ρ)τk

βk(1− τk)

m∑
j=1

(1 +
√

2) · 1
j

2k
· 2
( j

2k

)1/2
≤
√

2 + 2
β(1− τk)

ζ(3
2) τk(1− ρ)

√
k . (138)

Here we have used (102), with m = [12k], and |σj | ≤ 1. By (135) and (136) we have that
τk(1− ρ)

√
k → 0, and so also the third term at the right-hand side of (137) tends to 0.

We finally consider the first term,

Rk :=
1− ρ
2βk

k−1∑
j=0

(1 + ρ− σj)σj
(1− σj)2(1 + ρ− 2σj)

(139)

on the right-hand side of (137). We show below that

0 ≤ Rk ≤
1 + ρ

2β(1− ρ)
1√

π(k − 3/4)
τk

1− τk
. (140)

From (135) and (136) it then follows that also Rk → 0.
To show (140), we follow the approach that was used to prove Lemma 5.2, and we let for

|u| < τ−1

F (u) =
(1 + ρ− σ(u))σ(u)

(1− σ(u))2(1 + ρ− 2σ(u))
, (141)

where
σ(u) = a−

√
a2 − z ; a = 1

2(1 + ρ) , z = ρu . (142)

Using
(1 + ρ− σ(u))σ(u) = ρu , (143)

we have

F (u) =
ρu

(1− σ(u))2(1 + ρ− 2σ(u))
=

z

2(1− a+
√
a2 − z)2

√
a2 − z

=
∞∑
n=0

gn z
n . (144)

By contour integration as in (85)–(88), we have that

gn =
1

2πi

∫
|z|=r

z

2(1− a+
√
a2 − z)2

√
a2 − z

dz

zn+1

=
1

2π

∞∫
a2

(1− a)2 + a2 − x
((1− a)2 − a2 + x)2

1√
x− a2

dx

xn

=
1

2π

∞∫
a2

1
2(1 + ρ2)− x

(x− ρ)2
1√

x− a2

dx

xn
(145)
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for n = 0, 1, ... . Now g0 = 0, see (144), and so the last integral vanishes for n = 0. The
integrand in this integral changes sign once, from positive to negative at x = 1

2(1 + ρ2) > a2,
and 1/xn is positive and strictly decreasing in x ≥ a2 when n = 1, 2, ... . It follows that gn > 0,
n = 1, 2, ... . Also, we have

1
2(1 + ρ2)− x

(x− ρ)2
≤

1
2(1 + ρ2)− a2

(a2 − ρ)2
=

4
(1− ρ)2

, x ≥ a2 , (146)

and so we conclude that for n = 1, 2, ...

0 < gn ≤ 1
2π

4
(1− ρ)2

∞∫
a2

1√
x− a2

dx

xn

=
1
π

1 + ρ

(1− ρ)2
1
a2n

∞∫
1

1√
t− 1

dt

tn
. (147)

From 1
n! F

(n)(0) = gn ρ
n and τ = ρ/a2, we then get

0 <
F (n)(0)
n!

≤ 1
π

1 + ρ

(1− ρ)2

∞∫
1

(τ/t)n√
t− 1

dt , n = 1, 2, ... . (148)

We return to (139). As in (82), we have

Rk =
1− ρ

2β
1
k

k−1∑
j=0

F (e2πij/k) =
1− ρ

2β

∞∑
s=0

F (ks)(0)
(ks)!

. (149)

Since F (0) = 0, we obtain from (148) that

0 < Rk ≤ 1− ρ
2β

1
π

1 + ρ

(1− ρ)2

∞∑
s=1

∞∫
1

(τ/t)ks√
t− 1

dt

=
1

2πβ
1 + ρ

1− ρ

∞∫
1

(τ/t)k

1− (τ/t)k
dt√
t− 1

. (150)

Then using that

0 <
(τ/t)k

1− (τ/t)k
<

τk

1− τk
1
tk
, t > 1 , (151)

we obtain

0 < Rk <
1

2πβ
1 + ρ

1− ρ
τk

1− τk

∞∫
1

dt

tk
√
t− 1

. (152)

For the remaining integral, we use the substitution t = es, s ≥ 0 and the inequality es/2−e−s/2 >
s, s > 0, and we get

∞∫
1

dt

tk
√
t− 1

=

∞∫
0

e−(k−3/4)s√
es/2 − e−s/2

ds <

∞∫
0

s−1/2 e−(k−3/4)s ds . (153)

The last integral in (153) equals (π/(k − 3/4))1/2, and using this in (152) we get (140). The
proof is complete.

Note 7.2. From the estimates of the three terms at the right-hand side of (147), it is seen that

EMβ(ω; k) = O(τk(−ln τk)1/2) . (154)
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A Approximating 1− σj
We present approximations of 1−σj , j = 1, 2, ..., k−1 , that were needed at several places when
(1− ρ)

√
k is small. With uj = exp(2πij/k), we have

1− σj = 1
2(1− ρ) +

√
(1
2(1 + ρ))2 − ρ uj

= 1
2(1− ρ) +

√
1− uj − (1− ρ)(1− uj) + 1

4(1− ρ)2

= 1
2(1− ρ) +

√
1− uj

(
1− (1− ρ) +

(1− ρ)2

4
√

1− uj

)1/2
. (155)

We have for j = 1, 2, ..., [12k]

|1− uk−j | = |1− uj | = 2 sin
(πj
k

)
≥ 4j

k
, (156)

and so ∣∣∣ (1− ρ)2

4
√

1− uj

∣∣∣ ≤ 1
8(1− ρ)2 k1/2 , j = 1, 2, ..., k − 1 . (157)

We develop the square root on the last line in (155) under the condition that

1− ρ < 1
3 ,

1
8(1− ρ)2 k1/2 < 1

3 . (158)

Then we get

1− σj = 1
2(1− ρ) +

√
1− uj

(
1− 1

2(1− ρ) +
(1− ρ)2

8
√

1− uj

− 1
8

(
−(1− ρ) +

(1− ρ)2

4
√

1− uj

)2
+ ...

)
= 1

2(1− ρ) +
√

1− uj − 1
2(1− ρ)

√
1− uj + 1

8(1− ρ)2

− 1
8(1− ρ)2

√
1− uj +

1
16

(1− ρ)3 − 1
128

(1− ρ)4√
1− uj

+ ...

=
√

1− uj
(

1− 1
2

(
1− 1√

1− uj

)
(1− ρ+ 1

4(1− ρ)2)

+
(1− ρ)3

16
√

1− uj
− 1

128
(1− ρ)4

1− uj
+ ...

)
=

√
1− uj

(
1− 1

2

(
1− 1√

1− uj

)
(1− ρ+ 1

4(1− ρ)2) +O
( (1− ρ)3√

1− uj

))
. (159)
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