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Abstract

Consider the all-time maximum of a Brownian motion with negative drift. Assume that
this process is sampled at certain points in time, where the time between two consecutive
points is rendered by an Erlang distribution with mean 1/w. The family of Erlang distri-
butions covers the entire range between deterministic and exponential distributions. We
show that the average convergence rate as w — oo for all such Erlangian sampled Brow-
nian motions is O(w~'/?), and that the constant involved in O ranges from —((1/2)/v2m
for deterministic sampling to 1/+/2 for exponential sampling. The basic ingredients of our
analysis are a finite-series expressions for the expected maximum, an asymptotic expansion
of Zf;ll(l — exp(2mij/k))~° as k — oo using Euler-Maclaurin summation, and Fourier
sampling of functions analytic in an open set containing the closed unit disk.
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1 Introduction
Let {Bgs(t) : t > 0} be a Brownian motion with negative drift defined as
Bp(t) = =pt+W(t), £5=0, (1)

with Bg(0) = 0 and {W(t) : t > 0} a Wiener process (standard Brownian motion). Since
0 is assumed to be positive, the Brownian motion will eventually drift towards —oo, and the
all-time maximum Mg = sup,cp+ Bs(t) is well defined. In fact, it is known that Mg follows an
exponential distribution with rate 23, so that P(Mz > z) = e 2% (see e.g. [8, Lemma 5.5]),
and hence the expected all-time maximum is simply given by EM 3 =1/20.

We consider sampled versions of the Brownian motion, meaning that we observe the process
only at time points tg = 0,%1,t2,.... A crucial assumption we make is that the times between
consecutive sampling points 1,, = t,, — t,—1, n € N are independent and identically distributed
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(i.i.d.). Let T denote a generic random variable with TiTl (here 2 denotes ‘equal in distri-
bution’) and ET' = w~!. The constant w represents the expected number of observations per
unit of time, henceforth referred to as the sampling frequency.

It is readily seen that a sampled version of the Brownian motion constitutes a random walk
{Sp(n) : n € N} with S3(0) = 0 and Sg(n) = X1 + ... + X, with X, X3, Xo,... i.i.d. and

x< Bg(T'). The fact that Brownian motion evolves in continuous space and time leads to great
simplifications in determining its properties. In contrast, the random walks that we obtain after
sampling, moving only at certain points in time, are objects that are much harder to study.
Although it is obvious that, as w — oo, the behavior of the random walk should become identical
to that of the Brownian motion, there are many effects to take into account for finite w. Let the
maximum of the random walk be denoted by Mg(w) = sup,,_q . Bs(ts). The sampling error
Ag(w) = Mﬂ — Mg(w) then depends on the drift 3, the sampling frequency w, and of course
on the distribution of 7. This paper deals with the expected maximum of the random walks
and, in particular, its deviation EAg(w) from the expected maximum 1/2f of the underlying
Brownian motion. This relatively simple characteristic already turns out to have an intriguing
description.

We assume that the times between sampling points are drawn from an Erlang distribution,

so that T2 Ej(\) with Ex(A) an Erlang distributed random variable consisting of k£ independent
exponential phases, each with mean 1/\, and

k—1
P(EWN) <o) =1- 3 ~e ()", >0, (2)

= n!
The mean and variance of Ei()\) are given by k/A and k/)\2?, respectively. One reason for
working under the assumption of Erlangian sampling is that T constant and T exponentially
distributed are opposite extremes with regard to randomness as well as in the family of Erlang
distributions (viz. with A = kw and k — oo and k = 1, respectively). Another reason is that
FErlangian sampling leads to a random walk of which the distribution of the all-time maximum
allows for an explicit solution. This gives rise to a series expression for EMg(w; k) in which
the k terms involve the k roots of P(c) = [o(1 + p — 0)]F — pF = 0 in |o| < 1 with p € (0,1)
given by k(1 — p)?w = 23%p. In this paper this series expression is first analyzed for the case
that w — oo while k remains bounded, yielding a leading-order behavior of EAg(w) of the form
—w 20, /v/21 + O(w™"). Here g}, is given explicitly in terms of the unit roots exp(2mij/k),
and tends to ((1/2) as k — oo. Next, a substantial effort is spent to make the O(w™!)-term
in the leading-order behavior of EAg(w) uniform in all £ > 1. To do this, an alternative series
representation of EMpg(w; k) is derived that involves also the roots of P in |o| > 1. Finally,
this alternative representation can also be used to describe the way in which EMg(w; k) — 0 as
w — 0 and k — oco. For a detailed overview of our results we refer to Subsection 2.4.

2 Preliminary results

In this section we present some first results. We show how the Erlangian sampling leads to a
tractable random walk. We also derive a general expression for the expected all-time maximum.
Before we do so, we pay attention to the special cases of equidistant sampling and exponential
sampling, for which results are available in the literature.



2.1 Equidistant sampling

In the case of equidistant sampling the time between two consecutive sampling points is always
1/w. From the definition of Brownian motion it then immediately follows that

Bs(T) £ N(—fw ™),

where N(a,b) denotes a normally distributed random variable with mean a and variance b. We
should thus consider the maximum of a random walk with normally distributed increments,
referred to in the literature as the Gaussian random walk. The maximum of this random walk
was studied in [7, 14]. In particular, [14, Thm. 2] yields, for w > 3/(2/7),

1 ¢1/2) , B

_ PN 2en) (Y
EMB(W)—% \/%+%+w\/%;r!(2r+l)(2r+2)(2W> ’

(3)

with ¢ the Riemann zeta function. This implies immediately that

BAs(w) =<2 4 o) (@)

with —((1/2)/v2m ~ 0.5826. Results similar to (4), in slightly different settings, have been
presented in [3, Thm. 2] and [6, Thm. 1]. A crucial difference is that our result (3) is obtained
from the exact expression for EMg(w), while the results in [3, 6] are derived from considering
the Brownian motion in a finite time interval, and estimating its maximum by Euler-Maclaurin
summation.

2.2 Exponential sampling

In the case of exponential sampling, we assume that the times between consecutive sampling
points are independent and exponentially distributed with mean 1/w. In this case we can prove
the following result.

Lemma 2.1. IfTiEl(w) then

Bs(T) L Ei(y2) — Ei(m), (5)

where

Nn=-0+V3FE+2w r=0+V03+2w. (6)

Proof. For 85+ 52/2 < w,

E(efsB@(T)) _ /oo e(ﬁs+82/2)tw€7wtdt
0
w
= o (Bs ) ®

The result in (5) then follows from

w Y172 (8)

w—(Bs+52/2) (1 —8)(72+s)

with 1,72 as in (6), and Lévy’s continuity theorem for Laplace transforms [16]. O



The random walk for which the increments are distributed as the difference of two expo-
nentials has been thoroughly studied in the literature. The maximum of this random walk is
known to be equal in distribution to the stationary waiting time in a so-called M /M /1 queue
with arrival rate v, and service rate 79, for which (see e.g. [2, p. 108])

P(Mg(w) > z) = %67(72*71)‘”, x > 0. 9)
2
This implies that
EMjy(w) = 11— (10)
’ Y22 —m’

from which it readily follows that

EAs(w) = \/;w + O™ (11)

with 1/v/2 ~ 0.7071. A similar result was obtained in [6, Thm. 3] for a Brownian motion in a
finite time interval sampled at uniformly distributed points.

2.3 Erlangian sampling

We now set T < Ej(kw) with mean w™! and variance 1/(kw?). Clearly, random sampling (k = 1)
and equidistant sampling (kK = co) can be seen as special cases. We first make the following
observation.

Lemma 2.2. IfTiEk(k:w) then

By(T) £ Br(v2) — Ex(m), (12)

where

y1=—-B+ VB3 +2kw, v =pF+F%+2kw. (13)

Proof. We know that for 3s + s2/2 < kw (see the proof of Lemma 2.1)

kw
E(e—sBs(E1(kw))y —
(e ) kw — (Bs + s2/2)
Y172
= . 14
(n=35)(2+s) 19
Hence,
k k
B = (1) () (15)
=S Yo+ s
which completes the proof. O

From Lemma 2.2 we conclude that in order to study an Erlangian sampled Brownian mo-
tion, we need to study a random walk with increments defined as the difference of two Erlang
distributed random variables. As it happens, this random walk has been studied before, and
an explicit solution for the distribution of Mg(w) is available. In order to explain this, we need
to make a small excursion into the world of fluctuation theory. We start from the observation

that Ms(w) < W with
W <L max{0, W + Bs(T)}. (16)



This equation is a special case of Lindley’s equation, describing the stationary waiting time of
a customer in the GI/G/1 queue. The case in (16) describes a single-server queue with Erlang
distributed service times and Erlang distributed interarrival times. In [1] it was shown that the
distribution of W can be expressed as a finite sum of exponentials, the exponents of which are
the roots of an equation that involves the Laplace transform of the Erlang distribution. This
gives the result [1, Corollary 3.3]

k
P(Mg(w) > 1) = > cjoze 21700 ¢ >0 (17)
j=1
Here,
k—1
02 o —1
¢j = E[ilo’l*]( R Y (18)
Hl:O,l;éj(Ul/Uj - 1)
and oy, ...,0,_1 the k roots in |o| < 1 of
P(o):=[o(1+p-0) —pf=0, (19)
where 25
=1-—, 20
p - (20)
11—
so that = = 2—6” and
k(1 - p)2w = 26% . (21)
The o; are given explicitly as
=11+ p)—/(2 (1 +p))2 — pe2rii/k i=0,1,...k—1 (22)
U] 2 + p 2 + P pe i J Pt AR .
The expected all-time maximum then equals
i S
EMp(w; k) = — 17 (23)
’ o (1 -0j)

and it is this expression that forms the point of departure for this paper.

2.4 Overview of the results

In the coordinates p, k, w and 3, related according to (13), (20), and (21), we obtain a limit
result for EMg(w; k) in the case that w — oo and k bounded or unbounded, and in the case
that w — 0 and £ — oo. In this paper, we do not address the intriguing question what happens
when w tends to a non-zero finite limit and £ — oo.

In Section 3 we start from (23) and show that when w — oo and k is bounded,

1
EMﬁ(w;k) = 21ﬂ — \/;17 (k — 2 \/11_7UJ> —i—O(w_l) , (24)

J]=

where -
uj = ek =01, k-1 (25)

denote the k unit roots. Notice that the case k =1 is in line with (11).



In Section 4 we determine the asymptotic behavior of the series

Ea

-1
(1 —uy)™* (26)
1

<.
Il

when s € R is fixed and k — co. We use for this a method developed by Brauchart et al. [4]
based on the Euler-Maclaurin summation formula. In particular, our results imply that

1 G —¢(1/2)  wM2¢(-1/2) 1 1
m(k‘jlﬂ>: NCT W g e) (27)

Notice that for £ — oo this agrees with the result in (4).

In Section 3 the result (24) is proved for the case that & remains bounded (Theorem 3.1).
The proof of Theorem 3.1 is relatively simple and uses the direct representation in (18) of
the ¢;’s as they occur in the series expression (23). A key observation in this proof is that
the term with j = 0 in the series representation dominates all other terms. The result (24)
comprises the quantity k — Zf;ll (1 — u;)~Y/2 for which the asymptotic behavior as k — oo is
given (Theorem 4.1) in terms of the Riemann zeta function by (27), using an approach based
on Euler-MacLaurin summation. It is therefore a relevant question to ask whether (24) also
holds with O(w™!) holding uniformly in & > 1. The approach to prove (24) for unbounded
k using the direct representation (18) of the ¢; is severely complicated by the fact that, as
k — oo and w — oo, the k zeros of P in (19) inside the unit circle accumulate on the set
{1 —V1—u| |u| =1}, so that the quantities o;/0; — 1, [ # j, that occur in (18), can become
arbitrarily small. In a situation like this it may be advantageous, as exemplified on several
occasions in N.G. de Bruijn’s Asymptotic Methods in Analysis, to view the problem at hand
from a different perspective. In this spirit, we use a different representation of the ¢;’s, viz. one
in which factors al_/a;-r — 1 (rather than o; /o — 1) appear with o~ and o™ the zeros of P
inside and outside the open unit disk |o| < 1, respectively (Lemma 5.1). This new representation
gives bounds on ¢; (Theorems 5.3 and 5.4) from which we can conclude that also in the case of
unbounded k, the term with j = 0 in the representation (23) is dominant when w — oco. The
proofs of Theorems 5.3 and 5.4 rely heavily on Lemma 5.2 that gives bounds on the products

f;ol(l — Uf/a;.r) that appear in the new representation of the ¢;. In the proof of Lemma 5.2 a

crucial role is played by the result that expresses a series Z?;é h(uj), with h(z) = > 00 d, 2"
analytic in an open set containing the closed unit disk, in terms of the decimated coefficients d,
k=0,1,... (Fourier sampling). In proving the extension of (24) to unbounded k (Theorem 6.1),
due to the results of Section 5, attention can thus be restricted to the term with j = 0 in (23),
making the proof rather straightforward.

In Section 7 we consider the behavior of EMg(w; k) as w — 0 and k — oo (the case that
w — 0 while & remains bounded yields EMg(w; k) — 0 in a trivial manner from (18)-(23). Then
the term with 5 = 0 in (23) is no longer dominant, and it can be shown from the results of

Section 5 that EMg(w; k) is well approximated, see the proof of Theorem 7.1, by

k—1
1—p (1+p—05)0;
2,8]4,‘ =0 (1—O'j)2(1+p—20'j).

(28)

The series in (28) can be cast into the form Z?;& F(u;), with F' analytic in an open set
containing the closed unit disk and F'(0) = 0. To this series, the Fourier sampling technique,
as it occurs in the proof of Lemma 5.2, can be applied. It thus follows that EMg(w; k) tends to
zero when w — 0 and k — oo, and k,w related as in (21) with fixed 5 > 0, and also the rate at
which EMg3(w; k) tends to zero can be determined.



3 Behavior of EMs(w; k) for bounded k and w — oo

We prove in this section the following result.

Theorem 3.1. Let k=1,2,.... Asw — 00,

k—

,_.

EM(w: k) = ;ﬁ - F (k=3 ———) +ow™), (29)

— ,/l—uj

<.

where u; are given as exp(2mij/k), j=1,...,k — 1.

Proof. We use the series expression (23) for EMg(w; k). We have from (13) and (20) that
1 —p=0(w ?), and so from (22)

1oy = 3= y1-w - (1= — )+ (=)

_ m+0< 1/2), j=0,1,. k—1. (30)

In particular, 1 — o9 = O(w™'/2) while 1 — o; is bounded away from 0 for j = 1,....,k — 1 as
w — 00. Then, from (18) and 1 — p = O(w™/?), as w — oo

k—1
=1 (01— 1)

cO:k1<UZ1>_>1’ (31)
=1 ;_

while for j =1,....k—1

k—1

k—1 o
a-1/ ] (4—1) (32)

Cj _ (
1=p 1=11%) 1=01%5 7

has a finite limit # 0 as w — oo. We conclude from p = g, (31), (32) and 1 — p = O(w™/?)
that, as w — o0,

N
—

— O 1
EMg(w; k) = _ 9% _ 2 P
o ed-o) 72 l-p

Ow™). (33)

To proceed, we need to approximate ¢y accurately. From the identity in the first line of (30) we
find for j=1,....,k—1

oj = 1-3(1-p)—1-u;(1-301-p)+0(1-p)%)
= - T w4+ (/T — (1= )+ O((1 = p)?) . (34)
This gives, see (31),

o = ST LT
pPCo pj[[lp—ffj
_ pkk‘lﬂ L(/T=u; — 1)(1 - p) + O((1 - p)?)
o V- - 3(V1T=u+1)(1 = p) +O((1 = p)?)
k—1
Mie X ) ro -



N

1 1/1—u]‘

where it has been used that p =1- (1 —p)k+ O((1 — p)?). Using this in (33) while noting
that y2(1 — p) = 2 and that > \/7 + O(w™1), we obtain the result. O

The proof of Theorem 3.1 shows that the term with 5 = 0 in the series (23) dominates
all other terms when w — oo and k remains bounded. We establish a similar result more
generally, allowing k to be unbounded as well, in Section 6, and extend the result of Theorem 3.1
accordingly.

— 1-(-p) (k- )+0(1-p)?), (35)

<.
Il

4 Asymptotics of Zf;ll (1 —wu;)~* as k — oo for fixed s

The large-w expression in Theorem 3.1 for EMg(w; k) contains the series Zf;ll (1 —u;)~° with
s = 1/2. Tt is of interest to find out how this series behaves with increasing k. Furthermore,
in Section 6, we consider the case that w — oo with unbounded k allowed, and then it appears
that the behavior of the series Zf;l (1 — u;)~* for large k is required to be known for s =
1/2,1,3/2,....

We adopt an approach in [4], for determining the asymptotic behavior of

k-1

=Y ), w= T (36)

=1

.

as k — oo and s € R is fixed. In [4] this approach is used for finding the asymptotic behavior of

k-1

(sm —) (37)

=1

.

as k — oo and s € C is fixed. The result that we obtain here for Si(s) is of the same nature as
the result for Uy(s) in [4], except that in our result, Theorem 4.1 below, all terms

C(s =)k, 1=0,1,.., (38)

occur, while the result in [4] has only terms (38) with even [. Furthermore, the exceptional
cases s = 1,2, ... are less complicated for our Si(s) than they are for U(s) in [4].

The method in [4] is a fine application of the Euler-Maclaurin summation formula that can
be found, along with various applications, in [5, Secs. 3.6-10]. We take s € R in (36) and this
implies that the terms t; in (36) satisfy ¢;_; = t7,j=1,...,k — 1. Hence, Sk(s) is real, and so
we have

k-1
Sk(s) =) fi(d) (39)
j=1
where
fr(@) = Re[(1 — m/F) =] . (40)
Expanding

() =X 0 o, ()



with Bl(s) the generalized Bernoulli polynomials, as in [4, Sec. 1], we get

s l—s
= @(3)(%) .zl <k, (42)
=0
where l )
Bi(s) = W cos(l + s)g . 1=0,1,.... (43)

Remember that ¢ denotes the Riemann zeta function.

Theorem 4.1. Let s € R and let p = 0,1, ... such that s+ 2p > 0. Then, as k — oo,

k+225l C(s—DE T4 0.,k s41,2,..,
Sk(s) = 2 (44)

k2 > Bk —DE T+ Ogp(BP7)  s=1,2,..
1=0,l#s5—1

where the constants implied by the Oy, depend on s and p but not on k.

Proof. We closely follow the approach in [4], so that many of the details are left out. We have
for f € C**1([1,m]) that

> 16) = [ Fade+ L7+ fom)
1

p
. ) C
4 Z 372' (f(Qr 1) (m) _ f(Qr 1) / f(2p+1) 2210:}(1)) dx | (45)

where Copt1(x) = Bopt1(x —[x]) is the periodized Bernoulli polynomial and By, is the Bernoulli
number. Using this with m = k — 1 and f = fi, see (40), and noting that fi(k — z) = fx(x),
we get

k-1
Sk(s) =) fr()
j=1
k)2 » B k)2 .
/fk ) dz+fi(1 QZ ha /fk2p+1) 221)-:_1(1)) de.  (46)
r=1

All quantities on the second line of (46) involving f; can be expressed in terms of the §;(s) in
(42-43). In particular, we get

—l
= 2 4
/fk o=k~ Zﬁl . (47)
where it has been used that for s e R, s < 1
1/2 1
1 dy
2 ——|dy= | ———— =1 4
/ Re [(1 _ 6271'11/)5} Yy / (1 _ e?my)s ( 8)
0 0



and that the same analyticity considerations as in [4, Subsec. 2.1] apply. In (47) we have to
consider the cases that s = 1,2, ... separately because of the term [ = s — 1; this will be done
below.

We find, after using (42-43) in (46) that for s # 1,2, ...

p
B,
_/€+226l { l+1+%+z(2j)!(8—l)27«_1

r=1
k/2 ( )
C T
_ o l—s—2p—1 “2p+1
(s = Daps1 / z *(2p+1)!dw}, (49)
1

where (a), is Pochhammer’s symbol. The expressions in {...} at the right-hand side of (49) are
identified in [4, Subsec. 2.2] as incomplete zeta functions (y ,(t) with y = k/2 and t = s — [, for
which

|Cy,p(t) - C(t)| = Ot,p(yitizp) ’ Yy > 0. (50)
Hence, for s # 1,2, ... and any p=10,1, ...

_k+2§:5l ) Cjop(s — 1) kH. (51)

In the case that s = K = 1,2, ..., we take the limit s — K in (51), using the result, to be proved
below,

lim A= = 1 (52)

Note that Br_1(K) = 0, due to the factor cos(l +s) § at the right-hand side of (43). Hence, we
get for s =K =1,2,.

SeE)=3k+2 > B(K) oK — KT (53)

1=0,l£K—1

Finally, taking any p = 0,1,... with s + 2p > 0, we can use (50) to conclude the proof in the
same way as the proof in [4] for Ug(s) in (37) is concluded in [4, Section 4].
We still have to show (52). From (43) we have for K = 1,2, ...

K
« B (0)

K s—K =311 (K —1) (54)

where B%K_)I(O)/(K—l)! is the coefficient of 251 in (z/(e*—1))¥. Thus, we have for 0 < r < 27

B}K_)l(o) 1 /1( z )Kd
(K—1)!  2m K\ee 1)

|z[=r

- o | ) g [ e =R

i ez — 1 ori | wk 1+ w
|z|=r Cr

(55)

where the substitution w = e* — 1, dz = dw/(1 + w) has been used and C, is the image under
the mapping |z| = r — e — 1 (which is easily seen, for small » > 0, to be a Jordan curve having
the origin w = 0 in its interior). This shows (52). O

10



Note 4.2. The result in (27) can be obtained by taking s =1/2, p =1 in (44), using that

1 N m3/2

1/2) = — 1/2) = — 1/2) = ——— .
M2 =g=. A=Y, m2)=-Tg (56)
Note 4.3. In the lower case in (44) a simplification occurs since for s = 1,2, ...
BGi(s) =0, k—1odd; C(s=1)=0, l=s5+2,5+4,... (57)
This leads to
(3]
Si(s) = 3k + > Bamar(s) C(2r) ¥ + Oy p(k*P71) | (58)
r=0
A similar situation as in Note 4.3 occurs in [4, Remark 1.2] for the case of Uk(s) in (37) with
s = 2,4,.... It is concluded in [4] that one gets exact formulas for Uy(s) in that case. While
this is true, see [13], the argument in [4] is incomplete. In the case of Si(s) with s =1,2,..., it

can be shown that it depends polynomially on k (degree < s), and so (58) holds exactly with
the Oy, deleted.

5 Bounds on ¢; from a representation using outer zeros

When £k is allowed to be unbounded, the analysis of EMs(w; k) using the series in (23) with the
¢; given by (18) is awkward. In this section, we present an alternative representation of the ¢;,
using the zeros of P in (19) outside |o| < 1, that is more convenient for getting bounds.

For j =0,1,....k — 1, we let

ot =11+ p) £ /(5 (1+p)? — pe2milk (59)

be the two solutions of the equation

oc(l4p—0)=pe™i/k (60)
Then for j=1,....k—1
\Uj_|<00_:p<1:aa'<\0;'|, (61)
and -
o; + O';_ =1+p; aj_a;f = pemiilk (62)
When we let
ogj=0;, j=01,.,k—1; Ok =0, j=0,1,.., k-1, (63)

then o, j =0,1,...,2k — 1 are the 2k zeros of P in (19).

Lemma 5.1. For j=0,1,....k—1,

c ! Ltp=o ]ﬁ(l J)k_l (1 UZ) (64)
R — o _ 2ty
Tk (1-0j)(1+p—205) ot e oS

11



Proof. We have from (18) that

okl
9 lo(l—ffl)

1—0j [I1Z oz¢j(0b o)

We re-express the product in the denominator at the right-hand side of (65). There holds

Cj = (65)

k—1 k—1
P(o) = (o(1+p— o) =g = (—1) [[ (0 —oi) [[ (0 — o) - (66)
=0 =0
Hence, for j =0,1,...,k — 1 from (63)
k—1 k—1
Poj) = (-1 ] (e5-00) [] (o5 =) (67)
1=0,1#£] 1=0
On the other hand,
1+p—-20
Plo:) = k 1 Nk R\ —k k J 68
(0) = (M1 p =) = Y (o) = ki S (68)
Hence, for j =0,1,....0k — 1,
ﬁ Ly = CDP)
1= i;§(0j“0i)
1+ p— 2Jj 1
= (-1 kp* - : (69)
oi(L+p=05) [IiZy (05 — o))
Next, by the first item in (63), o; — al+ = —(U;T — 07), and so
- 1 — 205 1
N T T n s R (70)
1=0,1#] oj(1+p—0;5) [I= (o] —a)
Using (70) in (65), we get
k—1 k—1
1 (03/p)* (14 p—0y) .

Finally, take out k factors O';-r from the last product at the right-hand side of (71), and use, see
(62),

(0505 /p)* = (05 0 /o) =1 (72)
to obtain the result. O

We now analyze the product Hf:_ol (1 -0/ O']J-r) of which H 1 (1 — o7) is the special case
with j = 0.

Lemma 5.2. For j=0,1,....k—1,

where




Proof. We have
k—

[y

k—1
-2 =exp(—klnol + In(c —ay)) . (75)
1 (1= %) = oo -kinof + 3 nfo] o)

Now

(o} —o) = In [\/az — pemii/k 4 \/az _ p€2ﬂ'il/k:|
= ln[l—aj—i— a2—pul} , (76)

where we have set

o d(14),  Leay A,y U -

Hence
111((7;_ — UZ) = hj(ul) s (78)
where
hj(u) :==In [1—aj—|— a2—pu] , lul < a?/p . (79)
Note that 4 . )
P 2 ( — ,0)
== = =1-(——) €(0,1). 80
TS 2T g2 T, (0,1) (80)

Furthermore, 1 — a;j + v/a? — pu has positive real part when |u| < a?/p = 771, and so hj(u) is
analytic in an open set containing the closed unit disk. There is the power series representation

hi(w) = 3" dnGi) "l < ¥/, (31)
n=0

in which d,,(j) are the power series coefficients of In[1 — a; + Va? — z].
From all this we get

where it has been used that

kol kE, n=0k2k,..,
eanl/k _ { (83)

= 0, otherwise .

Noting that do(j) = h;(0) =1n Jj—, we then see from (75) that

kl_[l (1 - %) = exp (k: i dis(7) pks) =: exp(g;j(p)) - (84)
1=0 J s=1

We analyze the d,(j), n = 1,2,..., in some detail. We have by Cauchy’s theorem for

n=12..
, 1 In(l+a; — va®—z)
d(j) = — / Jznﬂ dz (85)

13



when 0 < r < a? We deform the integration contour |z| = 7 so as to enclose the branch cut of
Va? — z from z = a® to z = +00. Now, for z > a?, we have

a’?— (x+i0) =FiVae —ad?, (86)

and so we get for n = 1,2, ...

o0

. 1 . ) dx
dn(j) = 5 / [ln(l —a;—ivVe—a?)—In(l —a; +ive — QQ)} prs (87)
a2
By partial integration, noting that the quantity in [...] at the right-hand side of (87) vanishes
at x = a2, we get
(e.)
) = = / 1 | 1 . 1 dx
n 2mn ) 2Vzx —a? 1 —a; —ive—a® 1—aj+ive—a?la”
B 1— Qj / 1 1 dz (88)
- 2mn Vi—aZ2 (1—aj)?+z—a® 2"
a2
for n = 1,2, .... Finally, setting u?> =  — a® > 0, we get
1 o
— aj 1
d J du . 89
nlJ) = / 1—a] )2 +u? (u?+a?)” “ (89)
0

By the substitutions ¢t = u/a and v = tbjlﬂ, the result (89) can be brought into the forms

o) - b 70 b2
T T | 110,62 (1+2)n
0
-1 7 1 dv
= :1 2 vee 90
T na?" / 1402 (1+02/bj)" " TS (90)

where we have set b; = (a/(1 — a;))?, so that

1 4p o2mij/k (91)

—1-
b (L+p)p

is in the right-half plane.
We now show that Red,(j) < 0. We have for t> =2 > 0 and b € C, Reb > 0 that

Re( 20 ) =Re () > 0. 9

Then Redy,(j) < 0 follows from (90) and Re b, ! > 0. From (84) it is then seen that Re g;(p) < 0,
and the first item in (74) is proved.
Next, we have from Re bj_1 > 0 that |1 +v2/bj| > 1 for all v > 0. Hence, from (90),

1
2na?n ’

\dn ()] < n=1,2 ... (93)

14



From (84) it is then see that

> plcs . p\F
) <k 3 5 = —am(1- () ) (94)
s=1
and noting that a = (1 + p), this gives the second item in (74). O

The following result follows immediately from Lemmas 5.1 and 5.2.

Theorem 5.3. For j =0,1,....k — 1,

o5 S% (12)?11 paj— 2aj)‘ ’ (9)
and . - . N
=% (1—gj)(1p+pj—20j)( +0(17)) (96)
where 7 = 4p/(1 + p)? and the constant implied by O in (96) is bounded by 1.
Another inequality for ¢;, j = 1,...,k — 1, is the following one.
Theorem 5.4. For j =1,2,..., [g] =:m,
WHkaﬂﬁ(lij(1+V)lm (97)

Proof. We have from oj_ J =o0;,j=1,...k—=1,that ¢s_; =}, j=1,...,k —1, and this gives

lejl = lek—jl, 7 =1,.
From Lemma 5.1 With 7 =0 we have

= )
Cy = E (1 - Ul) . (98)
=1
Therefore, as g9 = p,
k-1 k-1

1 p(l \V2_1—p 15
— (1-o0 — = 1-o0 =——c) . 99
¢ L0-a ¢k<k11( )= (99)

Furthermore, from Lemma 5.2 for j =1,2,...,k—1

‘H(1—7)‘<1, (100)

and so from Lemma 5.1

1+p—o0j I—=p 172
¢; g‘ ’ A 101
= o+ —20)| vk © (on
Next, we show that for j =1,2,....m
7\1/2 7 \1/2
|1—JJ|>(2k) : |1+p—2aj|22(ﬁ) L l4p—oj<14+V2.  (102)

15



We have with ¢t = 27 /k € (0, 7]

l—0;j=3(1—p —i—\/%l—kp —pet (103)
_ 1 2 it
1+p—20j—2\/(§(1—|—p)) —pet (104)
l+p—0;=231+p) +\/§1+p —peit . (105)
Now
Re[\/(J+p)? —pet] >0, [\/(GA+p)2 —pet| < \JGA+p)2 4. (106)
and so

L= ol 2 (AL + )2 = pe[2, L4 p—205] = 2(A(L+p))® — pe| /2 (107)

while, as 0 < p < 1,

Mtp—ol <5040 44/ +p)2+p<14V2, (108)

which establishes the third inequality in (102). For the first two inequalities in (102), we compute

(31 +p))? = pe™? = (3(1 + p))* — 2p(3(1 + p))? cost + p
= (3(1-p)* +2P( (1+p))*(1 — cost)
= (31 =p)* +p(L+p)*sin® 5t > (3(1— p))* + p(1+ p)*(t/7)*

(109)

where the inequality sinz > 2x/m, 0 < = < 7/2 has been used. Now for 0 < y < 1 and
0<p<1

(3(1-p))*
QT +o(1+p)? > G =p) +p(1+p)?* > ((51+p)+p)* > (5", (110)
and so we get
. 12
GO+p2=pe P> G (2), o<t<r. (111)
T
This yields the first two inequalities in (102), and then the result follows from (101). O

6 Extension of Theorem 3.1

In this section we show the following extension of Theorem 3.1.

Theorem 6.1. For fized 3 > 0,

N

EMj(w; k) = — (L)m(k— ~ ) 0W ). weoe,  (12)

26 2kw V-

.
Il

where O holds uniformly in k =1,2,....

16



Proof. We first show that we can restrict attention to the term j = 0 in the series (23) for
EMgs(w; k). We have by (20)

)Z cjo;j ’ 1—p Cjo; ‘ 1 —p Z) cjo;j
Y2(1 — o) 26 1—o0; 1—o0;

where m = [%k] and where it has been used that c;—; = ¢}, ox—j = 07, j = 1,2,...,k — 1. Now

Theorem 5.4 and (102) give

1—P Z‘lcﬂj )< 21+ V3) e 1/2§; (1—p \/E<2k>1/2

(113)

— 0j J J
\f+ 2 2
< VR0 - 0tk = (VB2 ) 2L (114)
where (21) has been used in the last step. Hence,
EMg(w; k) = 22 + e/ * O™, (115)

2ﬂ

where the constant implied by O is bounded by 2(v/2 + 2){(2).
We now bound and approximate ¢y. We have from Lemma 5.1 with j =0

w\»—n

H (1—-0j). (116)
Furthermore, there is the approximation, see Appendix

1—aj_m(1—e<1—\/11_7w)+0(%>) (117)

3

with e = (1 —p) + (1 — p)?, and

W=yl = [T —uej| > 26/k)?,  j=1,2,..m. (118)

We furthermore have from u; = exp(2mij/k) that

1k oh=1 K2l
%H 1—uj) = THsin?zl, (119)
j=1 =1
see [4], (1.11) for the last identity. From all this we get
k—1
1 (1-p)?
=Tl (1-<(1- ) vo(i=2)). o)
jl_‘[l 1-— Uy 1-— Uj
Next, from (118) and € = O(1 — p), we see that
1 1
(1- ——=—)=0(-—%) 121
( 1-— Uj \/(; ( )
uniformly in j =1,2,....,k — 1. Hence
k-1 1
co= (1—5(1—7» (1+O( ’ D) (122)
jl_I1 1—uy Z V1=

17



Now by (118) and m = [1k]

(1-p)? 1_%\ <SR- Y
j=1 j=1
< LK1= 02302 = 1R - 9P VE= 0 ). (123)
Hence 1
co = 60(1 + O(W» (124)
with
k—1
& = II (1—5(1— \/11_7%»2
= a2 n(1-c(1- ). (129
We develop
k—1 1 k—1 1
2 1n<1 —5(1 — M>> = —¢ 2 (1 — M)
1.2 k_l( S >2+O |:€3 k_l‘l— ! ﬁ (126)
2 = V1= = V1I—u;l 1
From - , . , 1
;(1— ﬂ> — 0(Vk) > — (k-1 (127)

J
(see (27) for the first item in (127) and use Theorem 4.1 or proceed directly for the second item
in (127)) we have

k—1 1 )
- ———) =0(k). (128)
j:l ( A /]_ — u])
Finally, from (118) we have
_ ) 5 m
1— = O(K32Y " j73/2) = 0(k/?). (129)
S B
Using (126-129) in (125), we get
k—1 1
G = 1—2 1— + 02 k) + O3 K3/?)
jz; < 1 — uj)
k—1
1
= 1-(1-p) l——— )+ 0w H 4+ 0w™?), (130)
j:zl ( A /1 — u])

where we have used that 2e =1 — p+ O((1 — p)?) and that k(1 — p)? = O(w™!), see (21).
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Using (130) and (124) in (115), we get

EMs(w; k) = 22 4 O(w™)

20
_ 2%(1_(1_@2(1—\/11_*%)%0@—1)
. k—1
— 216—2ﬁp<1+p;(1—\/11_7uj)>+0(w_1)
_ L 1=rp L O™ 131
a5 X i) o (131)

where (127) has been used in the last step to replace the p in front of > ; by 1 at the expense
of an error O((1 — p)?Vk) = O(w™1). Since by (21)

1—p  p/? 1 1
= = +0(—]), 132
20 V2kw  V2kw (kW) (132)
we get the result. O

7 Behavior of EMjs(w; k) as w — 0 and k — oo

In this section we show the following result.

Theorem 7.1. Assume that 3 > 0 is fized and that w — 0 and k — oco. Then EMg(w; k) — 0.
Proof. By Theorem 5.3

_1 1—|—p—aj
7]€ (1—0j)(1—|-p—20j

¢ ) (1 +&5k(p)) (133)

where for all k =1,2,...and all j =0,1,....k—1

* 4p 1—py\?
iRl s T—55 7 (1+p)2 (1+p) (134
We have by (21)
9,32
k(1—p)? = pTﬁ — 00, (135)
and so ke )2
—k(1 —
ko P
Now by (23), (20) and (133)
k-1
1- 1 1
EMywik) = 1231 ( +2p 05)0;
2 5=0 k(1 —0;)?(1+p—20)
k-1
N peok(p) Llo0 (A +p—0j)ojeinp) (137
2 2 )
28k(1 — p) 26k = (1—0;)*(1+p—20j)



The second term on the right-hand side of (137) tends to 0 by (134), (135), (136). As to the
third term on the right-hand side of (137), we estimate

S (I+p—05)oieikp)
Zﬂk ; (1—0;)2(1+p— 20])‘
1-p)rt &2 (A+p—0)0y
< S0 2 =P+ - 205
L-p)™" - V21 _ V242
N ﬁ(k(l f)7"“) ; ]( Z< ')>1/2 < 3(1 _+7.k) )1 —-p)VE . (138)
2k 2k

Here we have used (102), with m = [1k], and |oj| < 1. By (135) and (136) we have that

7%(1 — p) Vk — 0, and so also the third term at the right-hand side of (137) tends to 0.
We finally consider the first term,

k 1
(1
Z +,0 0j)0; (139)
25 = 1—0J (1+p—20j)

on the right-hand side of (137). We show below that
1+p 1 Tk
0<R
FS 950 - p) ek =30 1- 7"
From (135) and (136) it then follows that also Ry — 0.

To show (140), we follow the approach that was used to prove Lemma 5.2, and we let for
lu| <771

(140)

_ (A+p—ow)o(u)
)= o2+ p 20 .
where
o(u)=a—+Va®—z; a=3(14+p), z2=pu. (142)
Using
(14 p— o) o(u) = pu (143)
we have
B pu B z
PO = 0P+ )20~ 2 ar VotV
= Z gn 2" . (144)
n=0
By contour integration as in (85)—(88), we have that
1 z dz
I = %| Z 2(1 —a+ Va2 —2)2Va2 -z 2!

17 1-a)P?+a®—=z 1 dx
(

27 (1-a2—-a2+2)? Vz—_a2 2"
(12
<1 2
_ 1/2(1+p)_$ 1 (145)
2 (x—p)? Vo —aZ 2"
(12

20



for n = 0,1,.... Now go = 0, see (144), and so the last integral vanishes for n = 0. The
integrand in this integral changes sign once, from positive to negative at = = %(1 +p%) > a?,

and 1/2" is positive and strictly decreasing in > a? when n = 1,2, .... It follows that g,, > 0,
n=1,2,.... Also, we have
1 2 1 2 2
11 _ 11 —
2( +p)2x§2( _;p)Qa: 4 5 iUZ(:LZ, (].46)
(z = p) (a® = p) (1—=p)
and so we conclude that for n = 1,2, ...
oo
<
0 <9 = 271' 1— / x—ag I‘n
[ 1 d
1 1I+4p 1 t
- - — 147
T (1-p)? aQ”/\/t—un (147)
1
From 4, FM™(0) = g, p" and 7 = p/a?, we then get
(n) 1 1 7
0 100 1 1+p (T/t) . n=1,2,... (148)
n! 7w (1—p)? Vit —
We return to (139). As in (82), we have
1-— p 1 27r1]/k 1 — F(kS)( )
= . 149
Ry = 28 kz 20 ; (ks)! (149)
Since F'(0) = 0, we obtain from (148) that
[e.e]
1—p 1 14p & / (1/t)*
0 < R, < — dt
Y ﬂ(l—p)QZ t—1
s=17
n k
_ L 14y / (1/t) dt (150)
23 1—p ) 1—(7/t)F Vt—1
Then using that
(7/t)F ko1
— t>1 151
Ry Sy A e 3 (151)
we obtain
14+p 7
0<R 152
SRS o1, l—Tk/tk\/t 1 (152)
1
For the remaining integral, we use the substitution t = e, s > 0 and the inequality e*/2—e~%/2 >
s, s > 0, and we get
o0 o oo
—(k—-3/4
/ _d / e e [ s g (153)
thy/t —1 05/2 _ o—s/2
1 0 0
The last integral in (153) equals (7/(k — 3/4))'/2, and using this in (152) we get (140). The
proof is complete. O

Note 7.2. From the estimates of the three terms at the right-hand side of (147), it is seen that
EMg(w; k) = O(7F (=In 7%)1/2) . (154)
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A Approximating 1 — o}

We present approximations of 1 —o;, j = 1,2,...,k—1, that were needed at several places when
(1 — p) Vk is small. With u; = exp(27ij/k), we have

l\’)h—l
—
|
+
w\.—\
P—‘
+
b
|
s}
<

<

l—0; =

Il
N[
=
|
_|_
$
I
<
<S
~—
—
—_
|
<
<S
~—
—
—_
|
S~—

(155)

We have for j =1,2,..., [%k:]

. (T
|1—uk,j]:|1—uj\:2s1n(?> > (156)

and so
‘<§ (1—p)2kY2 ., =12, k—1. (157)

‘4\/1—%

We develop the square root on the last line in (155) under the condition that
l-p<i, fa-p?E?<l. (158)
Then we get

— )2
1—0; = j0-p)+ 1—uj(1—;(1—p)+8(\1/1_”i)uj
52 (2
—é(—(l—p)Jrél(llf)uj) +)
= %(1—p)+ﬂ—l 1—p)/T—uj+2(1-p)?

S T (1 >3—i U_o)

128 ﬁ*
= M(15<1\/11—)(1p+1(1p)2)
J

(1-p)? 1 (1-p)*
TToyTow, 128 1-u +>
(1-p)°

_ M(1_;(1_ﬂl_i%)u—pﬁu—p)?w()(ﬂ)) . (159)
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