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In this paper a new methodology is presented to derive the aberration state of a lithographic projection
system from wafer metrology data. For this, new types of phase-shift gratings (PSG) are introduced, with
special features that give rise to a simple linear relation between the PSG image displacement and the phase
aberration function of the imaging system. By using the PSGs as the top-grating in a diffraction based overlay
(DBO) stack, their displacement can be measured as an overlay error using a standard wafer metrology tool.
In this way, the overlay error can be used as a measurand based on which the phase aberration function in the
exit pupil of the lithographic system can be reconstructed. In practice, the overlay error is measured for a set of
different PSG targets after which this information serves as input to a least-squares optimization problem that,
upon solving, provides estimates for the Zernike coefficients describing the aberration state of the lithographic
system. In addition to a detailed method description, this paper also deals with the additional complications
that arise when the method is implemented experimentally and this leads to a number of model refinements
and a required calibration step. Finally, the overall performance of the method is assessed through a number of
experiments in which the aberration state of the lithographic system is intentionally de-tuned and subsequently
estimated by the new method. These experiments show a remarkably good agreement, with an error smaller
than 5mλ, between the requested aberrations, the aberrations measured by the on-tool aberration sensor and
the results of the new wafer-based method.
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1. Introduction
In recent years, the specifications and tolerances for
aberration control in the lithographic industry have
reached a level at which also the contributions from dy-
namic effects form a significant fraction of the overall
aberrations of a lithographic system. In this context,
an aberration is considered dynamic when its contri-
bution may change during the complete exposure of a
wafer. This includes, for example, lens heating, vibra-
tional modes of lens elements due to the scanning mo-
tion of the reticle stage or even refractive index vari-
ations of the immersion fluid caused by flow or bub-
bles. Although, modern day lithographic systems are all
equipped with on-tool sensors to measure their aberra-
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tions, these sensors commonly operate in between wafer
exposures and consequently are unable to pick-up the
dynamics of the mentioned effects. In the present work
we aim at developing an alternative wafer based aberra-
tion metrology method, with a desired accuracy better
than 2.5mλ, that can pick-up and study these effects.

In the semiconductor industry, lithography is applied
to transfer a desired pattern from a reticle onto a light-
sensitive layer on a wafer. If aberrations are present,
these give rise to deformations of the transferred pat-
tern, like lateral feature displacements and blurring ef-
fects, which in turn may lead to malfunctioning elec-
tronic circuits or chips. Therefore, aberration control in
the semiconductor industry is mainly driven by the tight
error tolerances for the features being printed. This also
means that aberrations are only considered relevant if
they significantly alter the printed pattern and, look-
ing at the problem from this perspective, it seems log-
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ical to monitor the aberration state of a lithographic
system based on information extracted from the wafer.
However, quantitative wafer based aberration analysis
proves to be very challenging. Not only are the aberra-
tion induced changes very small, they are also strongly
correlated with other feature shape changing effects like
focussing and wafer processing. Because of these and
other complications, wafer based aberration metrology
methods have never become an industry standard that
is widely used. Nevertheless, we will show in this pa-
per that the above mentioned issues can be overcome
and that a wafer based method can be devised that is
an excellent candidate to study dynamic aberration ef-
fects and also has the potential to act as an independent
reference for the established on-tool aberration sensors
(based on shearing-interferometry [1]).
The wafer based aberration metrology method pre-

sented here is inspired by a paper of Nomura published
in 2001 [2]. In this paper, Nomura introduces a new
type of aberration sensitive phase-shift gratings (PSG),
based on which he could devise a method to distinguish
between odd and even aberrations, simply by measuring
the aberration induced image shift for a few PSG images.
In the current work, we build upon his pioneering work,
to devise a quantitative method that can retrieve the
complete aberration function of a lithographic system.
The remainder of this paper is organized as follows. In

Sec. 2 the basic concepts and measurement principles of
the new method are discussed. This includes the design
and systematic analysis of the PSG targets, a derivation
of the model relating PSG overlay errors to Zernike aber-
rations and also a simulation based proof-of-principle.
Sec. 3 deals with the additional complications that arise
when the proposed method is implemented experimen-
tally. There it will be shown that, although some of
the distinguished experimental issues have the potential
to significantly degrade the performance of the method,
they can all be accounted for, or compensated, through
a number of model refinements and a calibration opera-
tion. In Sec. 4 the implementation of the method is dis-
cussed and experimental results are given for a number
of aberration reconstruction examples. This will also il-
lustrate the impact of the various model refinements and
the calibration operation introduced in Sec. 3. Sec. 4 is
concluded with an experiment in which the aberrations
measured by the new wafer based method are compared
with the on-tool aberration sensor results, showing that
both methods agree to a level better than 5mλ. We will
conclude the overview of our work in Sec. 5, where we
shall summarize and comment on the results obtained
and where we shall give recommendations for further
development of the method.

2. PSG-OVL Aberration Metrology
In this section, the basic concepts and measurement
principles exploited in this paper, are discussed. Based
on a simplified image formation model and new types of
phase-shift gratings (PSG), it is shown that a straight-
forward relation can be realized between the displace-

ment of a PSG image and the aberrations of the imaging
system. In addition, it is explained how standard wafer
metrology tools can be exploited to measure this aberra-
tion induced displacement for a tailored set of different
PSGs, in this way collecting enough information to al-
low estimation of the aberration function of the optical
system.

2.A. Aerial Image and 2-Beam Interferences
The simplified image formation model is based on the
following assumptions. For the illumination conditions
in the lithographic system, the effective illumination is
assumed to consist of a circular centered monopole with
a radius σ that is very small compared to the numer-
ical aperture (NA) of the lithographic projection lens
and thus effectively generates a plane wave towards the
reticle. Upon transmission of the incident plane wave
through a periodic structure on the reticle, a discrete
number w of diffracted beams are generated that lie
within the NA of the projection lens. The aerial im-
age of such a diffraction grating is then a superposition
of a number W of 2-beam interferences, with W =

(
w
2

)
.

Each of these 2-beam interferences can be represented as
a cosine-fringe in the aerial image, characterized by two
parameters that are its phase-offset and its amplitude.
These two beams are characterized by the complex-
valued diffraction amplitudes given by C1 exp iφ1 and
C2 exp iφ2, and by their reciprocal space coordinates
denoted by (h1, g1) and (h2, g2), respectively. The in-
terference of these two beams leads to a spatial fre-
quency component of the aerial image, at the coordi-
nates (h = h1 − h2, g = g1 − g2), given by

Ĩh,g = C2
1 + C2

2 + 2C1C2 cos [2π(h1 − h2)x

+2π(g1 − g2)y + φ1 − φ2 +∆Φ1,2] , (1)

where we will assume for now that φ1 = φ2 (the φ1 ̸= φ2

case is discussed at the end of Subsec. 3.D). In this case,
the overall phase-offset of the cosine-fringe, denoted by
∆Φ1,2, is given by the difference of the wave-aberration
function taken at the two spatial frequencies or diffrac-
tion angles in the exit pupil of the lens; the amplitude of
the cosine-fringe is determined by the diffraction ampli-
tudes of the grating at mask level. The pattern-shift of
the aerial image is a complicated function of the phase-
shift and amplitudes for all the 2-beam interferences that
give rise to the aerial image. A directly interpretable and
unambiguous relation between the pattern-shift and the
aberrations of the projection lens can be achieved when
the aerial image is generated by only a single 2-beam in-
terference (see Fig. 1). In this case the observed pattern-
shift of the aerial image, ∆XAI, is simply given by

∆XAI =
∆Φ1,2 P

2π
, (2)

with P the period or pitch of the generated fringe pat-
tern.

Given that, for the aimed aberration metrology, the
entrance pupil consists of a single monopole centered at
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Fig. 1. Two beam interference image formation. Beams 1
and 2 have equal wavelengths with dashed and solid lines
representing tops and valleys of the plane wave, respectively.
Where solid (or dashed) lines intersect, both beams are in
phase and constructive interference takes place to form the
image (interference fringes indicated by the thick black lines).
A shift of the image plane in the z-direction (defocus) and/or
a phase change of either beam will only shift the complete
interference fringe in the image plane (z=0) in the lateral (x)
direction.

zero, a 2-beam interference can only be realized by a
diffraction grating at mask level that has at least one
diffraction order that is “forbidden”, i.e. has zero am-
plitude.

2.B. Gratings with Forbidden Diffraction Orders
The analysis of forbidden orders of a 1-dimensional
diffraction grating with N equidistant subdivisions or
taps in its unit cell, and with for each j-th tap a re-
spective scattering factor denoted by fj , with j =
0, 1, · · · , N − 1, is typically carried out in terms of the
unit cell’s structure factor, which is, for the k-th diffrac-
tion order, given by (see e.g. Ch. 2, Eq. (46) in [3], with
i2 = −1)

FN (k) =

N−1∑
j=0

fj exp
{
2πi jkN

}
. (3)

First, it should be noted that the tap-based scattering
factors fj have to be complex-valued in order to realize
a forbidden order only at the +k diffraction order while
the −k diffraction order has non-zero amplitude. In-
deed, for real-valued scattering factors fj , the symmetry
relation |FN (−k)| = |FN (+k)| is always satisfied (also
known as Friedel’s law, a well-known property of the
Fourier transform of a real-valued function). Next, the
question should be addressed how many tapsN are to be
distinguished within the unit cell. For N = 2, only the
trivial solution for the set fj is obtained, equal to {1, 1},
which actually implies a pitch halving. For N = 3, only

k 0 1 2 3 4

1 O X O O O

2 O X X O O

3 O X X X O

4 O X O X O

5 O O O X O

6 O O X X O

7 O O X O O

Table 1. Possible sequences of diffraction orders for N = 4,
with ”O” and ”X” indicating non-forbidden and forbidden
diffraction orders, respectively, and the top-row giving the
indices k of the diffraction order (note that the 0-th order
relates to the centered monopole illumination).

a real-valued solution for the set fj is obtained given
by {1, 1, 1}, which does not qualify. For N = 4, non-
trivial complex-valued solutions are obtained for the set
fj . Note that without loss of generality, f(j=0) can be
set equal to 1. Possible sequences of diffraction orders
in the reciprocal space unit cell k = 0, · · · , N are given
in Table 1. The cases 1 and 2 in Table 1 will be shown
to be the (independent) relevant cases.

Case-1 requires that |F(N=4)(1)| = 0, which leads to
the condition

1 + if1 − f2 − if3 = 0 . (4)

This single equation on {f1, f2, f3} leaves two degrees
of freedom. By making the choice f2 = 0 = f3 , the
relation reduces to 1 + if1 = 0 , which yields the set
fj given by {1, i, 0, 0}, which is identified as Nomura’s
phase-shift grating (PSG) [2].

Case-2 requires that both |F(N=4)(1)| = 0 and
|F(N=4)(2)| = 0, which leads to the simultaneous con-
ditions

1 + if1 − f2 − if3 = 0 , (5)

1− f1 + f2 − f3 = 0 . (6)

The latter equations still leave one degree of freedom
on {f1, f2, f3}. By making the choice f3 = 0, a non-
trivial solution for the set fj is found to be {1, 1+i, i, 0}.
Clearly, by having two consecutive diffraction orders
(k = 1 and k = 2) that are forbidden, a larger range
of pitches can be accommodated before a higher diffrac-
tion order is allowed within the NA of the projection
lens. In that sense, case-3 would hypothetically be even
more preferable, but its simultaneous conditions given
by

1 + if1 − f2 − if3 = 0 , (7)

1− f1 + f2 − f3 = 0 , (8)

1− if1 − f2 + if3 = 0 , (9)

just allows for the trivial solution for the set fj given by
{1, 1, 1, 1}, which corresponds to an effective pitch that
is a quarter of the original one. Similarly, case-4 cor-
responds to a pitch halving. Case-5 and 6 are further
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Fig. 2. PSG diffraction pattern control. Dots and crosses rep-
resent allowed and forbidden diffraction orders, respectively.
Variation of the PSG pitch scales the diffraction pattern and
changes the radial sampling position of the +1-st diffraction
order. A rotation, θ, of the PSG grating in the xy-plane gives
rise to an identical rotation of its diffraction pattern in pupil
space.

equivalent to case-1 and 2, respectively, while case-7 ob-
viously cannot lead to a situation with just 2 non-zero
diffraction orders within the NA of the exit pupil. Con-
cluding, for N = 4, there are two solutions for the set
fj that yield a diffraction pattern that can be used to
generate a 2-beam interference process within the NA of
the optical system, given by:

{1, i, 0, 0} OXOOO , (10)

{1, 1 + i, i, 0} OXXOO . (11)

Note that a complex scattering factor implies that light
transmitted by the corresponding tap is phase-shifted
with respect to other taps. This is why a grating involv-
ing complex valued taps is commonly referred to as a
phase-shift grating (PSG) and we will use this nomen-
clature to address this type of gratings throughout the
remainder of this paper.

2.C. Sampling the phase aberration function
Using the grating designs given in (10) and (11), it is pos-
sible to generate a diffraction pattern having only two
non-zero (allowed) diffraction orders within the NA of
the optical system, while all other diffraction orders are
either zero (forbidden) or lie completely outside the NA.
In this case, the image of the grating will be generated
from a single 2-beam interference and the simple relation
given in Eq. (2) applies. Consequently, the phase differ-
ence of the aberration function evaluated at the position
of the two allowed diffraction orders can be determined
by measuring the displacement of the aerial image at the
wafer level.
As the aberration function is probed at the location of

the allowed diffraction orders, we can control the probing
locations by varying the grating parameters. Assum-
ing normal incident plane wave illumination, the 0-th
diffraction order of the grating will be generated at the
center of the exit pupil, while the higher orders can be

generated anywhere in the pupil by changing the pitch
and rotation of the grating, accordingly (see Fig. 2).
Consequently, the gratings defined in (10) and (11) can
be used to sample the phase difference of the aberra-
tion function between the center position and another
position elsewhere in the pupil, by controlling the 1-st
diffraction order position via the pitch and orientation
of the grating.

However, the grating designs given in (10) and (11)
cannot be used to sample the entire pupil. This is be-
cause Eq. (2) is only valid in the case of 2-beam imaging.
This means that, for larger pitches, when the diffraction
pattern is compressed relative to the size of the pupil,
the condition should be satisfied that no non-zero higher
diffraction orders enter the pupil. As a results, the fol-
lowing constraint applies on the maximum allowed grat-
ing pitch

P ≤ kmin λ

NA
, (12)

where kmin specifies the lowest diffraction orders that
should be kept outside the NA to satisfy the 2-beam re-
quirement. Note that kmin is different for both designs
given in (10) and (11); the first (Nomura) design has
one allowed 2-nd diffraction order implying kmin = 2,
while the second design has both 2-nd diffraction or-
ders forbidden thus allowing kmin = 3. As a result of
the constraint given in Eq. (12), the aberration function
cannot be sampled close to the center of the pupil (see
also Fig.4), with the excluded area being larger for the
design in (10) than in (11).

2.D. Aberration Information from Overlay Measure-
ments
In the previous subsections it was explained that the im-
age displacement of a PSG directly provides the phase
difference between two discrete points of the aberration
function. However, since the aberrations we intend to
measure are expected to be very small, typically in the
order of 5mλ for well corrected (lithographic) systems,
it can prove quite challenging to measure the aberration
induced image displacement with a high enough accu-
racy to pick-up these effects. Fortunately, the measure-
ment of image displacements is a common task in the
lithographic industry, known as overlay metrology, and
we can exploit existing commercially available tools to
measure our grating displacements accurate enough for
the aimed aberration metrology described in this paper.

In the lithographic industry several different over-
lay metrology methods, which can be either diffraction-
based or image-based, are available to determine the
shift between layers, known as the overlay error. They
all have in common that both layers, for which the dis-
placement should be compared, should contain standard
grating features from which it is possible to deduce the
relative layer placement error. In the remainder of this
paper we shall use an overlay measurement methodology
known as diffraction based overlay (DBO) to measure
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Fig. 3. Basic principle of diffraction based overlay (DBO).
A focused spot, with an annular pupil distribution, is used
to illuminate a stack with two gratings. The back reflected
light, containing diffraction orders, is collected and imaged
on a CCD camera (top row images). In the case that both
gratings are perfectly aligned, the image on the CCD will
be symmetrical (center column), while if a displacement is
present, the recorded CCD image is asymmetrical (left and
right columns). Then using two such grating stacks, with
known biasses in overlay, the relative displacement between
the top and bottom grating layers can be determined from
the measured asymmetries in free first diffraction orders re-
flected by both stacks.

the PSG image displacements. We choose DBO as it
is the method that currently provides the highest mea-
surement accuracy and reproducibility based on a com-
mercially available system (ASML YieldStar S/T-200).
Nonetheless, the basic ideas and principles enabling the
aberration metrology method presented in this paper
can also be used to devise a similar aberration metrol-
ogy method based on another overlay measurement tech-
nique.
In DBO, the displacement between two layers is as-

sessed by including identical line-space (LS) gratings in
each layer which are then effectively printed on top of
each other. What results is a stack with two gratings
and possibly some other unstructured layers in between
(see Fig. 3). The relative shift between both gratings in
the stack is determined via an asymmetry in the inten-
sity of the +1st and −1st diffraction orders; the stack
is illuminated by a spot after which the back reflected
light, containing the first diffraction orders coming from
the gratings, is collected on a CCD camera. Combining
pupil images from two such grating stacks, both with a
different yet known displacement between top and bot-
tom grating, it is then possible to accurately compute
the overlay error between both layers (for DBO details
see [4, 5]).
The above described standard DBO measurement can

be adapted for our application as follows. We gener-
ate the top resist grating in the stacks from a PSG.
As bottom grating we use a standard line-space (LS)
pattern etched in silicon having the same pitch as the
PSG and which we assume manufactured and placed
perfectly so that it may act as an absolute reference. In

this case the OVL error measured between both gratings
in the stacks, directly gives us the PSG image shift due
to aberrations present during the exposure of the PSG
layer (potential issues originating from a non-perfect
bottom reference grating and/or additional OVL con-
tributions coming from other sources than aberrations
are discussed in Sec. 3).

A restrictive consequence of using DBO is that it im-
poses a constraint on the minimum pitch of the PSG
gratings that can be used. If the pitch of the gratings in
the stack is too small, their first diffraction orders will
not lie within the NA of the wafer metrology sensor and
consequently no overlay error can be determined. This
leads to the following constraint on the minimum pitch

P >
λDBO

DNA DBO
, (13)

where NA DBO and λDBO are the numerical aperture and
radiation wavelength of the DBO-tool and D is a param-
eter controlling the amount of the first diffraction order
present within the NA of the DBO-tool. For D ≤ 2, first
diffraction order information is available, however to al-
low accurate displacement measurements a typical value
of D = 1.8 is required. Consequently, the minimum
grating pitch allowed by the DBO overlay measurement
(with a YieldStar S/T-200; NA = 0.95, λ = 425nm) is
P ≥ 249nm. In pupil space, this constraint translates
to a sampling area in the pupil bounded by the radius
ρ ≤ 0.57 thus preventing us to sample close to the edge
of the pupil (see Fig. 4).

2.E. Sampling close to the pupil edge: 2D-PSGs
The combination of the constraint on the minimum PSG
pitch which was given in Eq. (13), together with the
constraint on the maximum PSG pitch in Eq. (12), im-
plies that the resulting pupil area that can be addressed
(see Fig. 4) is clearly insufficient to collect enough phase
information to successfully retrieve the aberration func-
tion. Also note that the pupil area that can be addressed
by the design in (10) is completely contained by the area
accessible with the design in (11), we will therefore ex-
clusively use the latter design in the remainder of this
paper and shall refer to it as 1D-PSG. To enlarge the
fraction of the pupil that can be sampled using PSG
targets in combination with DBO, we shall now intro-
duce a new type of two-dimensional phase-shift gratings
(2D-PSG) on top of the 1D-PSGs introduced in subsec-
tion 2.B and will show how the additional design freedom
for these 2D-PSGs enables one to sample the aberration
function near the pupil edge.

A 2D-PSG is defined in this context as a two-
dimensional phase-shift-grating with a typically oblique
unit cell, that allows for 2 (truly) diffracted beams within
the NA of the projection lens, on top of the zeroth or-
der beam. This implies that there are 3 independent 2-
beam interferences that make up the aerial image at the
wafer level; two of these three 2-beam interferences com-
prise the zeroth order beam, and the third 2-beam in-



6

ρ≡1

0.45
0.36

0.57

Pupil accessibility

Pupil area 1

Pupil area 2

Fig. 4. Pupil accessibility of 1D-PSGs in combination with
DBO. The concentric circle at pupil radius 0.57 represents
the maximum radial sampling position allowed by the con-
straint in Eq. (13) (for DBO with a YieldStar S-200; NA =
0.95, λ = 425nm). The circles at pupil radius 0.45 and 0.36
represent the minimum radial pupil position allowed by the
constraint in Eq. (12) for the PSG design given in (10) and
(11), respectively. Consequently, phase information from the
hatched Pupil area 1 can be obtained using PSG design (11)
while design (10) can only be used to sample the smaller
pupil subset labeled Pupil area 2.

terference occurs between the two truly diffracted beams
(with non-zero reciprocal space coordinates (h1, k1) and
(h2, k2), respectively). The parameters of the 2D unit
cell, i.e. lattice parameters a and b and the angle ϕ be-
tween them, are chosen such that the DBO metrology
tool is only sensitive to the latter 2-beam interference.
This will be explained in more detail in the sequel.
The structure factor of the 2D unit cell, comprising N

taps per direction and M = N2 objects, is given by

FN (h, k) =

M−1∑
j=0

fj exp {2πi(xjh+ yjk)} , (14)

with (h, k) the indices of the diffraction order, and fj
and xj , yj the scattering factor and the (fractional) 2D-
coordinates of the j-th object, respectively. A 2D-PSG
must then satisfy the following conditions (indicating a
number of so-called forbidden diffraction orders)

FN (-1,0) = 0

FN (0, 1) = 0

FN (-1,-1) = 0

FN (1, 1) = 0 (15)

These conditions yield a diffraction pattern with forbid-
den orders as shown in Table 2.
Two structures that satisfy the conditions in (14) are

shown in Fig. 5, both having 4 non-trivial (non-zero)
scattering objects in the unit cell. Note that outside of
the scattering object, the unit cell has no transmission.
It should further be noted that some of the objects need
to have a complex-valued scattering factor to enable the
generation of forbidden diffraction orders, following a
similar argumentation as in Subsec. 2.B for the 1D-PSG
case. The first type unit cell has three different phases,
0 , +90 and −90 degrees, while the second type has only

@
@@k
h

-1 0 1

1 O O X

0 O O X

-1 X X O

Table 2. Schematic representation of the diffraction pattern
defined by the conditions in (15), with ”O” and ”X” indicat-
ing non-forbidden and forbidden orders respectively.

0

1

-i

i

Fig. 5. Two 2D-PSG unit cell designs satisfying the condi-
tions in (15). Both designs contain 4 scattering objects and
their relative scattering factors are color coded according to
the legend on the right; i and -i indicate a relative phase offset
of +90 and −90 degrees respectively. Note that the correct
positioning and relative scattering factor of the objects in the
unit cell are essential in achieving destructive interference for
certain diffraction orders, the actual shape of the scattering
objects is, in this respect, of minor importance.

2 different phases, 0 and −90 degrees (parameters for
both types are given in Table 3). The 2nd type 2D-PSG
has the benefit that it uses only two phases, thus requir-
ing less process steps in reticle manufacturing, and has
better diffraction efficiency due to its larger scattering
objects. In the remainder of this paper we shall exclu-
sively use the second type and we shall simply refer to
it as 2D-PSG.

Next, the 2D unit cell can be deformed from a square
into an oblique one, hereby retaining the conditions of
the forbidden orders. At this stage it proves more con-
venient to use an alternative, yet equivalent, representa-
tion of the 2D-PSG unit cell as given in the upper-left
of Fig. 6. The obliquity operation for the original unit
cell in Fig. 5 is equivalent to a ratio change between the
width, A, and height, B, of the alternative design (see
second row of Fig. 6). In addition to this, we can also
apply an obliquity operation to the new unit cell defini-
tion as shown in the bottom-left of Fig. 6. The impact

j fj xj yj

0 1 1
8

1
8

1 +i 7
8

1
8

2 −i 1
8

7
8

3 1 7
8

7
8

j fj xj yj

0 −i 1
2

1
4

1 −i 3
4

1
2

2 1 1
4

1
2

3 1 1
2

3
4

Table 3. Parameters defining the left and right unit cell
shown in Fig. 5, respectively.
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Fig. 6. 2D-PSG unit cells and their corresponding diffraction
patterns (dots and crosses represent allowed and forbidden
orders, respectively). The first row pertains to the nominal
2D-PSG design which is equivalent to the minimum unit cell
given on the righthand side of Fig 5. In the second row, the
unit cell is transformed such that A ̸= B, resulting in a com-
pression of the diffraction pattern in one direction. In the
third row, the obliquity transformation is applied, resulting
in the generation of the orders (1, 0) and (0,−1) at differ-
ent distances from the pupil center. Note that the diffrac-
tion orders (1, 0) and (0,−1) are the two truly diffracted
beams. The orders that are forbidden because of the 2D-
PSG are: (−1, 0), (0, 1), (−1,−1) and (1, 1). Some higher
orders, for example (−2,−2) and (2, 2), are not forbidden,
but remain outside of the NA of the optical system. Note
that the nomenclature used here, and throughout this pa-
per, to indicate a diffraction order, pertains to the minimum
unit cell as defined in the right-hand side of Fig.5.

of these transformations on the gratings diffraction pat-
tern is shown on the right of Fig. 6. Going from the
first to the second row, it can be observed that a ra-
tio change between A and B compresses the diffraction
pattern in one direction, effectively bringing the allowed
diffraction orders (-1,0) and (0,1) closer together. On
the other hand, the obliquity transformation makes that
the two allowed orders are generated at a different radial
distance from the pupil center and this will proof to be
an essential feature measuring spherical aberration com-
ponents later on. Full details on the relation between
the 2D-PSG unit cell parameters and the resulting po-
sition of its allowed diffraction orders are provided in
Appendix B.
Since the diffraction pattern of a 2D-PSG contains

three allowed orders within the pupil, its aerial image is
comprised of a superposition of three 2-beam interfer-

ρ≡1

0.71

0.36

0.57

Pupil accessibility

1D-PSG

2D-PSG

Fig. 7. Pupil accessibility of 1D- and 2D-PSGs in combina-
tion with DBO.

ence fringes (with their respective reciprocal space coor-
dinates (h, k)):

(0, 0)− (1, 0) = (−1, 0) ,

(0, 0)− (0,−1) = (0, 1) ,

(1, 0)− (0,−1) = (1, 1) . (16)

Now the important observation to be made here is that
the first two fringes in (16), involving the zeroth or-
der, will have a small period, as the distance between
the orders is relatively large, and will therefore not sat-
isfy the constraint in Eq. (13). On the other hand, the
third fringe in (16) stems from interference between or-
ders (0,−1) and (1, 0) and, since these orders are rela-
tively close together, generates a fringe (h = h1−h2, k =
k1−k2) with a large enough period to be observed by the
DBO tool. As a result, the complicated 2D resist grat-
ing generated from a 2D-PSG will be observed by the
DBO tool as a simple 1D pattern as if it was generated
exclusively from interference between orders (0,−1) and
(1, 0). Moreover, it turns out that even the simple rela-
tion given in Eq.(2) remains valid for the fringe gener-
ated by the orders (0,−1) and (1, 0). Then, by applying
a resist grating imaged from the 2D-PSG as the top grat-
ing in an overlay stack, and using a LS grating etched in
silicon matched to the DBO observable 1D component,
the phase difference between two points close to the pupil
edge can again be measured as an overlay value.

Similar as in the 1D-case, a multitude of 2D-PSG grat-
ings at different orientations at mask-level can be used
so that the aberration function is sampled at different
azimuths in the pupil. Moreover, some freedom in the
allowed unit cells parameters can be used to achieve
additional measurement diversity (for more details see
Appendix B). Consequently, combining 1D-PSGs and
2D-PSGs, it is possible to collect differential phase in-
formation on the aberration function for the larger part
of the pupil via DBO measurements (see Fig. 7). This, in
principle, opens up the route towards a method capable
of estimating the aberrational state of a lithographic sys-
tem based on a large number of overlay measurements.

2.F. PSG-OVL aberration model
In the previous subsections it was explained that the
phase difference, measured as an overlay value, between
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different points in the pupil can be obtained by vary-
ing the type, unit cell parameters and orientation of the
PSG targets used in the overlay stack. In this way, using
both 1D- and 2D-PSGs with varied parameters, it is in
principle possible to collect enough information on the
aberration function to retrieve it. However, to estimate
the aberration function based on differential phase in-
formation we need to define an appropriate model and
aberration representation and for this purpose we pro-
ceed as follows.
Let Φ(ρ, θ) be the aberration function defined on the

pupil in normalized polar coordinates (0 ≤ ρ ≤ 1 and
0 ≤ θ ≤ 2π). The classical Zernike expansion of the
aberration function is then given by

Φ(ρ, θ) =
∑
n,m

αm
n Zm

n (ρ, θ) (17)

where αm
n denotes a Zernike coefficient for integer n, m

such that n−|m| is even and non-negative and Zm
n (ρ, θ)

denotes a classical Zernike circle polynomial defined as

Zm
n (ρ, θ) = R|m|

n (ρ)

{
cos(|m|θ) , for m ≥ 0

sin(|m|θ) , for m < 0
(18)

Note that we choose to use the double index Zernike
convention here as it will prove mathematically more
convenient to construct an appropriate model. On the
other hand we will use the single index Zernike conven-
tion in the text and figures to refer to specific aberra-
tion terms. A conversion rule, to go from the single index
Zernikes (FRINGE convention) to the double index, and
vice versa, is provided in Appendix A.
Next, let (ρ1, θ1) and (ρ2, θ2) be the polar pupil coor-

dinates of the two non-forbidden diffraction orders of a
given PSG and let ∆Φ1,2 be the phase difference of the
aberration function evaluated at these positions

∆Φ1,2 = Φ(ρ2, θ2)− Φ(ρ1, θ1) . (19)

Then, using Eqs. (2), (17) and (19), we can write the
aberration induced overlay error, OVL , for the current
PSG as

OVL = ∆XAI =
∆Φ1,2 P

2π

=
P

2π

∑
n,m

αm
n [Zm

n (ρ2, θ2)− Zm
n (ρ1, θ1)] , (20)

with the Zernike coefficients αm
n describing the aberra-

tion state of the imaging system.
If the aberration state of a system is unknown, the

expression in (20) allows one to devise a linear system
of equations relating the unknown Zernike coefficients,
αm
n , to measured overlay values. Estimates for the αm

n

are then obtained by solving the standard least-square
minimization problem defined by [6]

αmin = argmin
α

∥Eα−OVLmeas∥2 , (21)
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Fig. 8. Numerical proof-of-principle. A set of 60 Zernikes
(Z5 to Z64) is defined with random values between −50 and
+50mλ (top row). For this Zernike set, the aberration in-
duced shift of all 420 PSG targets is computed and the re-
sulting simulated values serve as input to the minimization
problem defined in Eq. (21). The bottom row presents the
error in the estimated Zernike coefficients, which is better
than 5mλ.

with α ∈ RG the vector of unknown Zernike coefficients,
OVLmeas ∈ RH the vector of measured overlay values
per PSG target and E ∈ RH×G a 2D matrix containing
the model predicted overlay per Zernike term per PSG
as constructed using Eq. (20). Note that H > G.

2.G. Proof-of-principle in simulation

In Subsec. 2.F it was shown how to relate the measured
PSG overlay values to the aberrations of the lithographic
system. Based on this model, a linear system of equa-
tions can be constructed that, upon solving, provides
estimates for the Zernike coefficients representing the
aberration function. To evaluate the potential of our
method we have executed the following numerical ex-
periment.

1. A set of 420 PSG targets (with a set of match-
ing 1D line-space reference gratings at the bottom
of the grating stack) is defined, aimed at sam-
pling throughout the pupil while satisfying the
constraints given in Eqs. (12), (13) and Appendix
B.

2. Using a commercial lithographic simulator (Pro-
lith (64-bit) Version 14.2.0.29) the aerial image of
all PSG targets is simulated under realistic expo-
sure conditions, given an arbitrary aberration state
of the lithographic system.

3. The images of the reference gratings are simulated
in the same way. However, since these gratings
are on a different layer, the aberration conditions
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during their exposure are possibly different, which
is accounted for in the simulation by using another
(unknown) aberration state.

4. The aberration induced overlay error per PSG tar-
get is then obtained as the shift between the aber-
rated PSG and reference grating aerial image.

5. Finally the simulated overlay values serve as input
to the least-square minimization problem given in
Eq.(21), which, upon solving, provides estimates
for the αm

n describing the aberrational state as de-
fined during the simulation of the PSG images.

The results of the above described numerical experiment
are presented in Fig. 8. In the top figure, the arbitrary
set of 64 Zernikes used for this simulation, is shown. In
the bottom figure the error per estimated Zernike is dis-
played. These simulation results clearly show that the
Zernike coefficients describing the aberrational state of a
lithographic system can in principle be estimated based
on measured relative image displacements. Note that,
an error is observed in the estimated coefficients due to
the fact that the various constraints do not allow the
pupil to be sampled optimally and because the simula-
tion assumed that the reference grating was produced
under different aberration conditions (random set with
same order of magnitude as shown in top of Fig. 8).
Nevertheless, the presented simulations shows that the
method set out in this paper is capable of estimating the
aberrational state of a lithographic system under these
conditions, with an accuracy better than 5mλ.

3. Experimental challenges and Refinements
In the previous section, the basic concepts and a nu-
merical proof-of-principle were presented for our wafer
based aberration metrology method. In the present sec-
tion, we discuss the complications that arise when the
proposed method is implemented experimentally and we
will evaluate the impact of these potential issues on the
overall performance of the method. Where necessary,
refinements of the PSG-OVL model and measurement
procedure are proposed in order to minimize their neg-
ative effect impact.

3.A. Finite illumination source
During the discussion of the basic measurement princi-
ples in Sec. 2 it was assumed that the PSG targets at
the reticle are illuminated coherently by a plane wave
at normal incidence. However, in reality all lithographic
systems have a finite source, commonly combined with
a Köhler illumination system. In such an illumination
configuration, every source point generates a plane wave
at a different angle towards the reticle and, consequently,
the reticle image can be considered as the sum of many
coherent contributions. In addition to this, the source
is imaged in the pupil planes of the projection optics.
This implies that light incident on a PSG, originating
from different points on the source, will generate diffrac-
tion orders at slightly different spatial frequencies in the

x

NA

σσ

(ρ
1
,θ

1
) (ρ

2
,θ

2
)

Fig. 9. Schematic representation of the projection optics exit
pupil for the case of a 1D-PSG in combination with an on-
axis finite monopole effective source. The monopole source,
the size of which is defined by the radius σ relative to the
NA of the projection system, is convoluted with the PSG
diffraction orders at locations (ρ1, θ1) and (ρ2, θ2). As the
source is assumed spatially incoherent, each point on the
resulting diffraction order discs can only interfere with its
corresponding point on the other disc and each of these point-
pairs effectively generate a single coherent contribution.

pupil and consequently will accumulate a different rela-
tive phase on propagation through the projection optics
if aberrations are present (see also Fig. 9). Under these
conditions, Eq. (2) is still valid to predict the aberration
induced fringe displacement for a single coherent contri-
bution, but does not give a good prediction for the over-
all displacement of the total PSG image, which consist
of the superposition of all differently displaced coherent
contributions. Consequently, the method presented in
Sec. 2 will also not provide optimal aberration estimates
for realistic lithographic systems due to the impact of
their finite sources.

A straightforward way to reduce the impact of the
finite source is to make it smaller so that it better ap-
proximates the coherent (single point) illumination case.
In modern day lithographic systems this is possible via
a user-defined effective source in the entrance pupil,
for example a small centered disk. However, the min-
imum area of such an effective source is constrained,
because making it too small either increases the expo-
sure time too much or requires the energy density to be
so high that the optics can get damaged. Consequently,
the source representation in the pupil cannot be small
enough to allow for an accurate coherent treatment of
the problem and we need to accommodate for the finite-
ness of the effective source through the PSG-OVL model,
for which we proceed as follows.

We assume the effective source in the pupil to be a
small disk (monopole), with radius σ, that is spatially in-
coherent and uniform. In addition it is assumed that the
diffraction efficiency of the scattering objects at the ret-
icle do not vary with the angle of incidence of the light.
The total PSG image is then obtained as the incoher-
ent summation of all fringe intensities while integrating
over the source and the effective aberration induced shift
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Pupil

Common Area

Pupil

Fig. 10. 2D-PSG diffraction orders partly outside the pupil.
A point on one diffraction order disc can only interfere, and
thus contribute to the overall image, when its corresponding
point on the other disc lies also within the pupil. As a result,
the effective diffraction order phase is obtained by integra-
tion over the common area of both orders which will be an
irregular shaped area when one, or both, diffraction orders
lie partly outside the pupil. Systematically computing the
average phase for such areas is dealt with in Appendix C.

simply becomes the average of the individual fringe dis-
placements. In this case, a similar expression as Eq. (2)
can be obtained, relating the overall PSG-image shift, in
the case of a finite source, to the average phase difference
between two areas in the pupil

∆XAI =
P

2π
(Φ̄σ(ρ2, θ2)− Φ̄σ(ρ1, θ1)) , (22)

where Φ̄σ denotes the average of the aberration function,
taken over a disk with radius σ at the diffraction order
positions (ρ, θ) (see Fig. 9). Next, the phase average over
a disk-shaped area in the pupil can also be written in
terms of Zernikes and we can finally write an equivalent
expression for Eq. (20) in which the finiteness of the
source is accounted for:

OVL = ∆XAI =
P

2π
(Φ̄σ(ρ2, θ2)− Φ̄σ(ρ1, θ1))

=
P

2π

∑
n,m

αm
n

[
Z̄m
n;σ(ρ2, θ2)− Z̄m

n;σ(ρ1, θ1)
]
, (23)

with Z̄m
n;σ(ρ, θ) the average of a Zernike function taken

over a disk with radius σ at the pupil position (ρ, θ).
Accurate computation of Zernike function averages re-
quired in Eq.(23) is discussed in Appendix C. It should
be noted that the 2D-PSGs introduced in Subsec. 2.E
require some additional attention. As they are meant
to sample the aberration function near the pupil edge,
we also have to deal with the case that, for either one or
both of the relevant interfering diffraction orders, the av-
eraging disc is partly outside the NA of the lithographic
system. Since the effective source is considered incoher-
ent, a point on the averaging disc will only contribute
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Fig. 11. Finite source impact. Assume a phase distribution
in the pupil, defined by Zernike function Z36. On the left, we
plot Z36 averaged over a disk as a function of the averaging
disk radius, σ, for four different radial positions in the pupil.
On the right, the disk average is plotted as a function of its
radial position to illustrate the impact of a finite monopole
source (σ = 0.122) compared to the coherent case (σ = 0.0).

if the corresponding points in the other diffraction or-
der also lies within the NA of the system. Source points
for which only one diffraction order lies within the NA
cannot interfere and consequently only produce a spa-
tially uniform yet irrelevant contribution to the image.
In Fig. 10 the common area of both allowed diffraction
orders is indicated for a general case that both orders
are cut differently by the NA limited pupil. The task of
computing the relative phase for the resulting strangely
shaped common area, which is indicated in Fig. 10, is
also dealt with in Appendix C.

In Fig. 11 the impact of a finite source (on-axis
monopole) on the effective phase of a diffraction order
area is shown. On the left, the effective diffraction order
phase, for Zernike function, Z36, is shown as a function
of the source radius, σ, for three radial positions of the
averaging disk in the pupil. It can be seen that the effec-
tive diffraction order phase deviates substantially from
the coherent case (σ = 0), already for modest illumina-
tion σ’s, clearly showing the necessity of the finite source
correction. The right-hand figure compares the effective
diffraction order phase for σ = 0.0 (coherent case) and
σ = 0.122 (realistic lower bound for the σ in a litho-
graphic system). Especially, for averaging areas near the
pupil edge (ρ → 1), as encountered for the 2D-PSGs, the
difference between the coherent and finite source models
is non-negligible.

3.B. Asymmetric resist gratings

Another experimental complication comes from the fact
that the PSGs are imaged by a 2-beam process into a
layer of resist with a finite thickness. As a result of this,
the resist grating formed from a 1D-PSG will be asym-
metric (see left-hand side of Fig. 12). In the 2D-PSG
case, where the image is formed by mutual interference
between three orders, the resulting resist grating looks
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250nm 250nm

Fig. 12. Cross-section SEM images. On the left a cross-
section SEM of a 1D-PSG wafer stack is shown and one can
observe a significant difference in side-wall angle (SWA) be-
tween both sides of the grating lines. On the right a cross-
section SEM of a 2D-PSG wafer stack is shown. It is clearly
observed that, although the line appears to be built-up from
tilted pillars, the 2D-PSG generates effectively a 1D grat-
ing with a pitch matched to the bottom grating. The fine
structure in the grating line is sub-resolution for the DBO
measurement, but can possibly contribute to the asymmetry
signal generated by the whole stack.

even more exotic, with effective grating lines built-up
from tilted pillars (see right-hand side of Fig. 12). These
irregular grating shapes introduce an offset in the asym-
metry signal of a DBO measurement and consequently
also give rise to a process and PSG dependent, yet con-
stant, offset in the measured overlay values. When not
accounted for, these offsets introduce very large errors
on the reconstructed spherical aberration terms (see also
Fig. 15). Fortunately, these artifacts are independent of
the aberrations that we want to determine, thus mak-
ing it possible to remove them via a calibration step.
For this purpose one can execute the presented aberra-
tion metrology method on a very well corrected litho-
graphic system and assume that the overlay values mea-
sured on that system for all PSGs are exclusively due to
the PSG grating asymmetries. Now by subtracting these
measured overlay residuals, as a reference measurement,
from any subsequent PSG-OVL measurement, one effec-
tively removes the Zernike reconstruction error coming
from the resist grating asymmetry. The price that is
paid for this, is that the reconstructed Zernikes are now
no longer independent and describe the aberration state
of the unknown system relative to the reference system,
but this is common practise in the lithographic industry
and therefore no problem for our aimed application.

3.C. Other overlay contributions
In this paper, the aberrations are estimated based on
measured overlay values. Therefore, it can be eas-
ily understood that, overlay contributions coming from
sources other than aberrations, directly propagate into
the Zernike reconstruction error. Possible other sources
contributing to the overlay are:

1. Mechanical overlay
The actual displacement between different layers
of the wafer, caused by wafer and reticle stage po-
sitioning errors.

2. Reticle registration errors

The misplacement of features on the reticles with
respect to the reticle designs.

3. Reticle and wafer deformations
Temperature gradients, (thermo-)mechanical
strain and/or processing can cause the reticle and
wafer to deform, introducing position dependent
relative displacements of the features they contain.

In its simplest form, mechanical overlay imposes a rela-
tive (x, y) position shift between features in two differ-
ent layers of the wafer, which is identical throughout our
small-sized target area in the die. In our method, where
we measure the grating displacement in the direction of
the grating vector only, the mechanical overlay contribu-
tion is given by the projection of the vector (x, y) on the
grating vector. As a result, mechanical overlay gives a
pitch independent contribution to the PSG grating dis-
placement, but does vary with the PSG orientation. It
turns out that the mechanical overlay fingerprint, the
fingerprint being the combined response of all PSG tar-
gets to a given overlay source, is identical to that of a tilt
aberration (linear combination of Z2 and Z3). However,
in a lithographic system, these aberration components
are typically ignored, since they are automatically com-
pensated during alignment of the wafer before exposure,
and we may conclude that mechanical overlay does not
contribute to the relevant Zernikes (Zt for t > 3).

The second overlay contribution listed is coming from
the reticle. If features on the reticle are not placed ex-
actly on the position defined in the reticle design, this
displacement contributes directly to the observed over-
lay for the displaced target. Since the overlay is defined
as the displacement between two gratings in two differ-
ent layers imaged from two different reticles, the com-
bined overlay contribution of both reticles is in fact the
target specific relative displacement between its bottom
and top grating, also known as the registration error be-
tween both reticles. This registration error, which is ba-
sically a manufacturing defect that remains static during
the lifetime of a reticle, is commonly measured during
manufacturing of a reticle set and could therefore be
compensated for in the PSG-OVL model. However, this
is not even necessary when a calibration as described in
Subsec. 3.B is performed, as this calibration step also au-
tomatically compensates for the static overlay contribu-
tion induced by the reticle registration error. Also other
reticle defects contribute to the Zernike reconstruction
error of our method, but these are discussed in more
detail in the next subsection.

The final contribution listed above is more tricky. The
mentioned deformations introduce overlay errors accord-
ing to the same mechanism as the reticle registration
error, but in this case depend on environmental and ex-
posure conditions, implying that they are not static, and
are, therefore, not automatically removed by the calibra-
tion. The overlay contribution generated by wafer and
reticle deformations is position dependent and can in
principle result in an arbitrary overlay fingerprint for a
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Rigorous 3D
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Fig. 13. Computed diffraction patterns for the nominal 1D-
PSG defined in (11). The top row shows the diffraction
pattern computed according to Kirchhoff, with as expected
only two non-zero orders within the NA (indicated by the
white circle). The middle row shows the diffraction pattern
for the same target when correctly accounting for the reticle
3D-effects. In this case three non-zero orders are predicted
within the NA, destroying the pure two-beam process. In
the bottom row the rigorously computed diffraction pattern
is shown for an optimized 1D-PSG design, showing that the
pure two-beam process is restored.

PSG-target set. However, temperature, strain and pro-
cessing deformations typically give rise to overlay con-
tributions that vary slowly over the wafer. By placing
all PSG targets required for our method close together,
we can thus minimize the impact of these deformations
to an acceptable low level. If this is insufficient, one may
resort to complex computational models to predict tem-
perature induced deformations, but this has not been
investigated further in the research for this paper.

3.D. Reticle 3D-effects and manufacturing errors

A typical lithographic reticle consist of a quartz sub-
strate on which a thin layer of chromium is deposited to
make it opaque. By selectively removing chromium us-
ing electron beam lithography, a desired binary pattern
can be transferred. In addition to this, our PSG designs
require that certain transmissive areas on the reticle are
assigned a different phase and this can be achieved by
selectively etching those areas into the substrate. Com-
bined, this allows us to manufacture a reticle with PSG
targets according to the designs in Sec. 2. However, since

1D-PSG 2D-PSG

SEM 

AIMS

Fig. 14. Illustration and impact of reticle manufacturing de-
fects. Top row shows a SEM image of a typical 1D- and 2D-
PSG on the reticle. The 1D SEM image was taken before the
phase etch step, while the 2D SEM image was taken after-
wards. One can observe significant corner rounding and addi-
tional deformations due to the phase etch into the substrate.
In the bottom row, a typical diffraction pattern for a 1D- and
2D-PSG is shown as measured by an AIMS microscope. Due
to the writing and etching defects, the intended forbidden
orders (indicated by dashed circles) are non-zero. Note that
the monopole source of the AIMS is relatively large, resulting
in overlapping orders and higher diffraction orders showing
up at the pupil edge which are of no concern in the actual
experiment in the lithographic system where a much smaller
source is used.

the resulting PSG feature sizes on the reticle are in the
same order of magnitude as the illumination wavelength
and the grating can not be considered optically thin, the
diffraction efficiency of the PSG targets is not predicted
well by the Kirchhoff diffraction model. Instead, a rigor-
ous 3D-diffraction model should be applied to correctly
account for the light-matter interactions taking place at
the reticle. In the first two rows of Fig. 13, the sim-
ulated diffraction pattern is shown for these two cases,
clearly illustrating that the forbidden diffraction orders
of the nominal PSG design are no longer zero when the
3D structure of the reticle is accounted for. At the bot-
tom row of Fig. 13, however, it is shown that this issue
can be solved by optimizing the nominal PSG design so
that it compensates the 3D-diffraction effects to again
achieve forbidden diffraction orders.

In addition to the 3D-diffraction effects discussed
above, also reticle manufacturing errors can contribute
to unwanted energy in the forbidden orders. These are
for example corner rounding, under-etch and non verti-
cal etch side walls and they can all modify the diffrac-
tion efficiency of the features on the reticle (see also
Fig. 14). As these imperfections are difficult to predict
and to parameterize it is impractical to accurately es-
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timate their impact via computational means. Instead,
one may choose to further optimize the PSG designs for
these effects experimentally. This would then be done by
making a test reticle containing PSGs for different com-
binations of design and processing parameters. Next, the
amount of energy in the forbidden orders is assessed by
measuring the diffraction pattern, for example using an
AIMS microscope. The combination of parameters for
which the forbidden order strength is minimal is then
used to manufacture the actual measurement reticle.

In reality, the forbidden diffraction orders will never
be completely zero. The first order effect of a small to
moderate non-zero forbidden order is that it reduces the
sensitivity of our proposed method for aberrations hav-
ing an even azimuthal dependence (αm

n with m is even),
while not influencing the sensitivity of odd aberrations
(m is odd). However, since we can, in principle, measure
the relative forbidden order strengths of all PSGs with
an AIMS microscope, this effect can also be accounted
for in the model by adjusting the sensitivity matrix (E
in Eq. (21)) accordingly. Nevertheless, it remains best
practice to strive for the lowest possible amount of en-
ergy in the forbidden orders to avoid higher order effects
and to have the highest possible sensitivity for all aber-
rations.

Even in the case of perfectly forbidden orders, there is
one other reticle characteristic that can impact the OVL
measured in our method and has not been discussed
yet. This is the relative phase of the allowed diffrac-
tion orders, φ1 and φ2, as occurring in Eq. (1). Looking
at Eq. (1) it can be understood that if φ1 − φ2 ̸= 0
this directly adds up to, and cannot be distinguished
from, ∆Φ1,2, the aberration induced phase contribution
and consequently contributes directly to the error of the
Zernikes reconstructed by our method. Furthermore, the
diffraction order phase is not easily measured using ex-
isting semiconductor equipment, which implies that a
model based correction of this artifact is not feasible.
But again, this reticle effect can also be assumed static
assuring that it is also effectively removed by the cali-
bration procedure described in Subsec. 3.B.

3.E. Stochastic overlay variations

The final topic we want to discuss in this section is the
uncertainty in the overlay measurement. Two distinct
sources generating stochastic variations in the measured
overlay signal are recognized. The first, is the uncer-
tainty coming from the DBO measurement itself and
is extremely small, in the order of a few tens of an
Angstrom. This very high measurement reproducibil-
ity was, in fact, the main reason why DBO was selected
as the overlay methodology of choice for our applica-
tion. It basically means that, no significant contribution
to the method error is expected from the DBO mea-
surement. The second contribution is caused by small
differences in the resist gratings used in the overlay mea-
surement. These differences may, for example, originate
from the complicated and random interaction between

exposure radiation and light sensitive molecules in the
resist layer or any other stochastic process during expo-
sure or processing of the wafers. The uncertainty intro-
duced by these mechanisms is much larger than that of
the DBO measurement and experiments have also shown
that their magnitude may vary as a function of the PSG
parameters.

Under these conditions, the ordinary least squares
minimization problem given in Eq. (21) is no longer opti-
mal and should be replaced by the weighted least squares
minimization problem given by

α̃min = argmin
α

∥Q(Eα− (OVLmeas −OVL ref))∥2 ,

(24)
where OVL ref denotes the calibration measurement on
the reference system, which we assume to be indepen-
dent of OVLmeas, in which case K simply becomes the
sum of the experimentally determined covariance matri-
ces

K = Kmeas +Kref , (25)

and Q denotes the Cholesky decomposition of K−1 ac-
cording to

K−1 = QQ∗ . (26)

The optimal generalized least squares estimator, α̃min,
for the Zernike coefficients describing the aberration
state of the lithographic system, can then be explicitly
written as

α̃min =
(
E∗K−1E

)−1
E∗K−1 (OVLmeas −OVLref ) .

(27)
where we have now correctly accounted for the PSG tar-
get specific overlay measurement uncertainty and the ad-
ditional uncertainty introduced by the calibration mea-
surement.

An additional uncertainty related problem that we
are facing for the current measurement reticles is that
the 420 targets included in the measurement modules,
do not sample the pupil optimally. As a result, the
conditioning of the resulting linear system is not very
good and this gives rise to a relatively large variance
for specific (spherical) Zernikes. In this case, the least-
squares estimation can be further improved by exploit-
ing a Tikhonov-like regularization approach which intro-
duces an additional term in the cost function:

α̃min (ζ) = argmin
α

∥Q (Eα− (OVLmeas −OVLref ))∥2

+ζ2 ∥D (α− αp)∥2 . (28)

Here D is the regularization operator and αp the prior
mean, which are both set based on prior knowledge of
typical aberration states of lithographic systems. The
parameter ζ ≥ 0 determines the importance of the regu-
larization term. Obtaining a good recipe for an optimal
choice of ζ is a non-trivial task. For a more detailed
description of the applied regularization techniques and
the determination of the regularization parameter, the
reader is referred to [7].
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4. Experimental verification of the method

In this section we present the experimental validation
of our method. We shall start by discussing the hard-
ware used and we will describe the applied experimental
procedures in detail, aimed at avoiding the experimental
pitfalls discussed in the previous section. Subsequently,
aberration retrieval results are presented for the case
that a known aberration was intentionally introduced
to the projection lens of a lithographic system and, ad-
ditionally, these wafer based reconstruction results are
compared to the aberrations measured by the on-tool
aberration sensors.

4.A. Reticle design

The most important components required by the PSG-
OVL aberration metrology method are the two matched
PSG and REF reticles required to construct the PSG-
OVL targets. For the reticle set used in the experiments
presented in this paper, the top-level layout is identi-
cal. They contain 7 × 7 measurement modules, where
each module consists off 420 PSG-based overlay targets.
In turn, each overlay target consists of several grating
stacks, that together allow one to determine a single
overlay value (see also Fig. 3). The grating stacks them-
selves are built up from two stacked 40×40µm2 gratings,
where the top and bottom grating are constructed from
the PSG and REF reticle, respectively. Basically, the
only difference between both reticle designs is the unit
cell used to fill the 40× 40µm2 grating areas (Note that
dimensions are given at wafer level (1X)). For the PSG
reticle, the unit cell definitions are given in Subsecs. 2.B
and 2.E for the 1D- and 2D-PSGs case, respectively. The
gratings used in the REF reticle design are simple line-
space gratings, which have the same effective pitch, P ,
and grating orientation, θ, as the corresponding grating
on the PSG reticle.
As mentioned above, the modules on the aberration

measurement reticles contain 420 PSG-OVL targets.
This set is composed from 28 different PSG-OVL targets
(3 1D-PSGs and 25 2D-PSGs) all included at 15 different
orientations (rotation angles in the reticle plane). For
the current reticles, we have included 3 grating stacks
per PSG-OVL target, and this results in a minimum
area required for a complete module that is a little bit
larger than 2mm2. Note that on our test reticles the
module size is substantially larger due to the inclusion
of visually observable labels and additional test and cal-
ibration features. Nevertheless, our test reticles already
includes 7 × 7 modules thus allowing one to also mea-
sure the field dependence of the aberrations in a single
exposure.

4.B. Experiment description

Experimental verification of the method is executed as
followes. First, a set of reference wafers is created; using
the complimentary binary REF reticle, coated silicon
wafers are exposed and subsequently etched, stripped
and cleaned. The chosen illumination condition used

to print the reference gratings was a wide conventional
setting (0.94σ at 1.35NA ), this in order to minimize the
impact of possible aberrations on the reference features.
The etch depth for the reference gratings is 30nm.

The chosen resist process for all our experiments is
105nm JSR resist AIM5484 on top of 95nm Brewer
BARC ARC29SR, this should result in sufficient pla-
narization of the etched reference gratings. All coatings
and development are done in-line on a Sokudo Duo track
fitted to an ASML NXT:1950Ai scanner. Before start-
ing experiments we determined the smallest safe con-
ventional illumination possible on the scanner (0.122σ
at 1.35NA ). We then determined the dose at which all
required phase gratings would print simultaneously to an
acceptable pattern by qualitative SEM inspection. That
exposure dose was then used for all experiments.

Each experiment consists of a set of exposures on the
reference wafers using the above mentioned resist process
and tools. The use of so-called image-tuner sub-recipes
allowed us to dial in specific aberration offsets per wafer.
The validity of each sub-recipe was first verified by mea-
suring the wavefront using the scanner’s own integrated
interferometer when applying the offsets requested in the
sub-recipe. For the exposures themselves we used a spe-
cific scanner test that would also allow us to measure
the wavefront before and after each exposure with the
scanner’s interferometer while still working in-line with
the track to bake and develop each wafer immediately
after exposure.

Measurements were then performed on each wafer on
a YieldStar S200 and raw pupil data was gathered that
was subsequently processed off-line to determine the
overlay error for each PSG target. These measured over-
lay values, together with uncertainty information gath-
ered from multiple measurements, then serve as input
to the minimization problems defined in Eq. (24) and
Eq. (28) which, upon solving, provide us with estimates
of the aberration state of the lithographic scanner at the
time of the PSG reticle exposure.

4.C. Experimental results

In this subsection we give an overview of the experimen-
tal work done to validate the method. We begin with an
experiment in which a single non-zero Zernike has been
dialed in as an aberration offset of the lithographic sys-
tem. This intentionally de-tuned system is subsequently
used to print the PSG reticle on top of the reference
features already on the wafers. Next, the overlay is
measured for all targets in a single module and, based
on these measured overlay values, we try to recover the
magnitude of the dialed in Zernike term. In Fig. 15 the
Zernike estimates obtained with the PSG-OVL method
are shown. The bar-plot on the top, pertains to retrieval
based on the raw measured overlay values, while the fi-
nite source is correctly accounted for according to Sub-
sec. 3.A. It may be observed that, although a Z7 with a
magnitude between 2 and 3nm is detected, the method
erroneously reconstructs large values for several other
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Fig. 15. Zernikes estimated with the PSG-OVL method for
the case that a single non-zero coefficient (Z7 = 3nm) was di-
aled in during exposure of the PSG layer onto the wafer. On
the top, estimates for the Zernikes (Z5−Z36), obtained from
the raw overlay measurements, are shown. In the middle, the
corresponding retrieval result is shown for the case that the
measured overlay values are first calibrated with respect to
an aberration-free reference system. The bottom row shows
the calibrated result when additionally regularization is ap-
plied in the fitting procedure.

Zernikes, with most profound values for the spherical
aberration terms (Z16, Z25 and Z36). These large spher-
ical terms are mainly due to the PSG asymmetry effect
discussed in Subsec. 3.B. Therefore, by applying the
calibration proposed in Subsec. 3.B, a strong improve-
ment can be achieved, generating the results shown in
the middle row of Fig. 15. Nonetheless, even for the
calibrated result, some reconstructed spherical Zernikes
remain substantial. A systematic analysis of this phe-
nomenon has shown that it is caused by the sub-optimal
sampling of the aberration function achieved by the cur-
rent set of measurement reticles. As a result, the con-
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Fig. 16. PSG-OVL reconstructed Zernikes for a requested
cocktail of 3 non-zero coefficients (Z8 = 2nm, Z10 = −2nm
and Z27 = 2nm).

ditioning of the linear system being solved is not very
good and, in this case, results in relatively large uncer-
tainty, specifically for the spherical Zernikes. A proven
concept to improve estimates from poorly conditioned
systems is the use of regularization and doing so further
improves the Zernikes estimates obtained with the PSG-
OVL method as is shown in the bottom row of Fig. 15.
In the remainder of this subsection, all presented recon-
struction results will be obtained with regularization and
are based on calibrated overlay data.

The results of a second experiment, in which a cocktail
of three non-zero Zernikes (Z8 = 2nm, Z10 = −2nm and
Z27 = 2nm) was dialed in, is shown in Fig. 16. Also in
this experiment, a very good correlation is observed be-
tween the requested and retrieved Zernike terms and all
residual Zernikes are smaller than 1nm (1nm ≈ 5mλ for
a lithographic system operating at 193nm). This gives
a good indication that the PSG-OVL method can de-
termine arbitrary aberration states and does not suffer
from a strong cross correlation between different aber-
ration terms.

So far, only reconstruction results are shown for odd
Zernike terms. As explained in Subsec. 3.D, the aber-
ration induced overlay sensitivity of even Zernikes is re-
duced when the intended forbidden orders of a PSGs are
non-zero. The impact of this phenomenon may be ob-
served in the retrieval results shown in Fig. 17, where
a cocktail of even Zernikes (Z5 = 2nm, Z13 = −2nm
and Z17 = 2nm) is dialed in during exposure. In the
top row, the PSG-OVL based estimates are shown when
this effect is neglected, indeed showing Zernike estimates
that are too small. A significant improvement is ob-
served when this effect is accounted for in the model
using AIMS measured forbidden order information (see
bottom row Fig. 17). Note that, AIMS measurements
were only available for a subset of all PSGs and that
missing data was supplemented by extrapolated values.
Therefore, the improvement achieved by this correction
is expected to be even more drastic when forbidden order
information is available for all PSGs used in the recon-
struction.
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       forbidden order correction)

Fig. 17. Zernikes estimated with the PSG-OVL method for
the case that a cocktail of 3 even Zernikes (Z5 = 2nm, Z13 =
−2nm and Z17 = 2nm) is dialed in. The top axis shows
the Zernike estimates obtained using both calibration and
regularization. The results in the bottom figure are obtained
using an additional correction based on the AIMS measured
residual forbidden order intensities generated by the PSG
reticle.

Finally, we present in Fig. 18 a comparison between
the aberration coefficients measured with the on-tool
aberration sensors of the exposure system and those esti-
mated by the PSG-OVL method. Also here, a very good
agreement between both measurements is observed for
the imposed non-zero Zernike coefficients. A comparison
of the residuals of both methods shows larger differences
between both methods, where it should be pointed out
that the residuals of the PSG-OVL method are slightly
larger than those of the on-tool sensor. Nevertheless,
it is remarkable that such a good agreement, down to
the sub-nanometer regime, can be achieved between a
wafer based method and a dedicated on-tool sensor that
is based on shearing interferometry.

5. Conclusion and discussion
In this paper we have presented a new methodology to
derive the aberration state of a lithographic projection
system based on wafer metrology data. This method
uses the aberration induced image shift of specially de-
signed overlay targets as a measurand based on which
the phase aberration function in the exit pupil of the
lithographic system can be reconstructed. In Sec. 2 it
was explained how PSG targets can be designed such
that a very simple relation emerges between their rel-
ative image position and the difference of the phase
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Fig. 18. Comparison between the aberration coefficients
measured by the on-tool sensors of the exposure tool and
the PSG-OVL method (identical experimental settings as in
Fig. 16).

aberration function evaluated at the location of their
diffraction orders. Moreover, it was shown that, using
a combination of 1D- and 2D-PSGs, the phase differ-
ence between different points throughout the pupil can
be probed, eventually providing enough information to
accurately estimate the Zernikes representing the phase
aberration function. At the end of Sec. 2 this methodol-
ogy was proven to be feasible in simulation via a numer-
ical experiment based on a lithographic simulator and
showed an aberration reconstruction accuracy of better
than 5mλ.

Before continuing with the experimental verification
of the method, first a number of practical complications
were addressed in Sec. 3. There it was shown that for
all complications currently recognized, their impact can
either be accounted for in the PSG-OVL model or their
negative effect can be strongly reduced through a cal-
ibration step. This was illustrated in Sec. 4 through a
number of experiments, with and without the mentioned
corrections, which showed the most drastic improvement
when the reference scanner calibration was included. Al-
together, using all model refinement and corrections dis-
cussed in Sec. 3, the accuracy of the wafer based aber-
ration estimation method introduced in this paper, was
shown to be remarkably good. The retrieval error, with
respect to the dialed in aberration and independent mea-
surement with the on-tool aberration sensors, is below
1nm, which corresponds to approximately 5mλ at the
exposure wavelength of the lithographic system being
evaluated.

Nonetheless, we still observe residuals in the recon-
structed Zernikes that are between 0.5 and 1nm. Al-
though extremely small, aberrations of this order of
magnitude are nowadays considered significant by the
lithographic industry. Therefore, the aim of the current
research was to achieve an aberration estimation accu-
racy better than 0.5nm and in this respect the current
work still requires an additional effort to reach the de-
sired accuracy. It should be noted here that metrology
solutions operating in the sub-nm regime always suffer



17

from the lack off a well defined absolute reference. In
a sense, one can no longer speak of an error for a given
method, but can only compare results between differ-
ent independent methods and, when differences are ob-
served, it is impossible to say which method is most
accurate. Apart from this merely philosophical issue en-
countered in advanced metrology, we do still see room
for further improvement of our method and we shall dis-
cuss this here briefly.
For the experiments presented in this paper, we have

used a set of reticles that was designed based on our
initial understanding and ideas regarding wafer based
aberration metrology. Since that time, we have gained
a lot more insight on the physical processes and error
sources relevant for our method. Basically, we now know
that our reticles are, in many ways, not optimal for the
aimed aberration metrology application. For example,
the current set of 420 PSG targets does not sample the
pupil in an optimal way and this leads to poor condition-
ing and significant cross-correlation in the linear system
being solved to estimate Zernikes. In fact, this is the
main reason why regularization does improve the aber-
ration reconstruction results obtained with the current
reticles. Apart from selecting the optimal PSG targets,
there is also still room to optimize the targets them-
selves. It was discussed in Subsec. 3.D that, although
the PSG designs are optimized to compensate mask 3D-
effects, there will always remain differences between the
design and realized features, leading to non-zero forbid-
den diffraction orders. An experimental optimization
approach, in which PSGs having slightly different de-
sign parameters are evaluated in terms of their measured
forbidden order strength, could be a way to compensate
these manufacturing defects which are hard to parame-
terize.
Parallel to improving the PSG set and the individ-

ual designs, also the analysis and corrections presented
in this paper can be further improved. For example,
the forbidden order correction mentioned in Subsec. 3.D
was based on AIMS measurements on just a subset off
all PSGs, with the missing data being filled in by ex-
trapolated values. Also, determining the target specific
variance for the overlay via a large number of exper-
iments, which then serves as input to the generalized
least-squares problem, will contribute to an improved
stability of the PSG-OVL method.
Altogether, we are convinced that, with a set of new

optimized measurement reticles, complete reticle metrol-
ogy data and accurate knowledge of the stochastic over-
lay behavior of the PSGs, the aimed aberration recon-
struction accuracy for the method presented in this pa-
per is well in reach. Consequently, we see this method as
an excellent candidate to study dynamic aberration ef-
fects occurring during exposure of a reticle and to serve
as an independent reference for on-tool aberration sen-
sors.
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Appendix A: Conversion between Zt and Zm
n

In this appendix we provide a conversion rule to go
from a Zernike function in single index notation, Zt,
(FRINGE convention) to a Zernike function in double
index notation, Zm

n , and vice versa.

a. Conversion: Zt → Zm
n

For t = 1, 2, · · · , we let

q = ⌊
√
t− 1⌋ , p =

⌊
t− q2 − 1

2

⌋
, (A1)

and

n = q + p , m = q − p , (A2)

then a single index Zernike function, Zt(ρ, θ) equals

Zt(ρ, θ) = Rm
n (ρ)

{
(t− q2 − 2p) cosmθ

+
[
1− (t− q2 − 2p)

]
sinmθ

}
= Zm

n (ρ, θ) . (A3)

b. Conversion: Zm
n → Zt

When n, m are positive integers such that n−m is even
and non-negative, then

Rm
n (ρ) cosmθ = Z

(
n+m

2 )2+n−m+1
, (A4)

Rm
n (ρ) sinmθ = Z

(
n+m

2 )2+n−m+2
, (A5)

with Eq.(A5) only valid for m ̸= 0.

Appendix B: 2D-PSG unit cell definition

In this appendix we discuss the relation between the
2D-PSG unit cell definition, its corresponding pupil po-
sitions of its allowed diffraction orders and the parame-
ters we use to define them.

We use 4 parameters that completely define the 2D-
PSG targets used by our method; the pitch, P , of the
resulting 1D-pattern generated from the interference be-
tween the two orders close the pupil edge, the distance
ρ1 between the pupil center and the allowed diffraction
order closest to the pupil edge, the fraction ξ being the
ratio between ρ3 and ρ0 that are defined in Fig. 19 and
finally the grating orientation ϕ. All distances defined
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Fig. 19. Definition of the relevant distances in reciprocal
(pupil) space.

in Fig. 19 are then given by

ρ0 =
λ

NAP
, (B1)

ρ1 = ρ1 , (B2)

ρ2 =
√
(1− ξ)2ρ20 + ρ21 − ξ2ρ20 , (B3)

ρ3 = ξρ0 , (B4)

ρA = (1− ξ)ρ0 (B5)

ρB =
√
(ρ21 − ξ2ρ20) , (B6)

where λ and NA are again the wavelength and numerical
aperture of the lithographic system.

A
C

B
C

Amin

B
m
in

A

B

ω

ψ

Fig. 20. Definition of the real space variables and relation
between the minimum unit cell (dotted line), computational
unit cell (dashed line) and the unit cell as defined in Fig. 6.

Next, we can also express the real-space parameters
defined in Fig. 20 in terms of the 2D-PSG parameters

and the distances defined in Fig. 19

ω = arccos

[
ρ21 + ρ22 − ρ20

2ρ1ρ2

]
, (B7)

Ψ = arccos

[
ρ20 + (2 sin (ω2 )ρ2)

2 − (ρ1 − ρ2)
2

4 sin (ω2 )ρ0ρ2

]
, (B8)

Amin =
λ

2NA ρ1

√(
1

cos (ω2 )

)2

+

(
1

sin (ω2 )

)2

, (B9)

Bmin =
ρ1
ρ2

Amin , (B10)

AC =
Ξλ

NA ξρ0
, (B11)

BC =
λ

NA
√
ρ21 − ξ2ρ20

, (B12)

where ξ is a rational number between 1
2 ≤ ξ ≤ 1 and Ξ is

the numerator of the smallest possible rational represen-
tation of ( ξ

1−ξ ). Note that the angles ω and Ψ, together

with the minimum unit cell rib lengths, are sufficient to
define a 2D-PSG in a reticle design. However, the super
cell defined by AC and BC is also provided because litho-
graphic simulators commonly require such a manhatten
like unit-cell to simulate the proposed 2D-PSGs.

For a given 2D-PSG design to be applicable, it should
satisfy similar requirements as in the 1D-PSG case; non-
forbidden higher orders should remain outside the pupil
and the effective pitch of the grating image should be ob-
servable by the DBO-tool. For a 2D-PSG this translates
into the following constraints

2λ

NA (1 + σ)
≤ P ≤ λDBO

CNADBO
, (B13)√

(1 + σ)2 − (4− 4ξ)

(
λ

NAP

)2

≤ ρ1 ≤ 1 , (B14)

1−
(
(1 + σ)2 − ρ21

)
(NAP )

2

4λ2
≥ ξ ≥ 1

2 . (B15)

Appendix C: Semi-analytic computation of phase dif-
ference averages

After linearizing the exponential comprising the phase
difference, it is required to evaluate the average of the
phase difference over a specific subset of the reference
pupil. This subset consists of the intersection region
of three disks, viz. the pupil disk, a displaced copy of
the pupil disk and the supporting disk of the scanner’s
illumination monopole. For the sake of mathematical
convenience we will use in this appendix the double in-
dex, complex exponential representation of the Zernike
functions and we assume that the disk pertaining to the
scanner monopole has radius 1 and center o while the
two pupil disks have radius r and centers ν1 and ν2, re-
spectively. See Fig. 21 for the configuration in which the
hatched region S is the averaging region.

The mathematical problem at hand thus consists of
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Fig. 21. Integration range S in Eq. (C1) consisting of the
intersection of two pupil disks centered at ν1 and ν2 and a
third disk centered at o defined by the scanner’s illumination
monopole, with choice of origin and radii facilitating solving
the mathematical problem.

solving the integrals∫∫
S

Zm′

n′

(
ν−ν1,2

r

)
dν , (C1)

where Zm′

n′ denotes the complex Zernike circle polyno-
mial vanishing outside the unit disk, given as

Zm′

n′ (ν) ≡ Zm′

n′ (ρeiθ) = R
|m′|
n′ (ρ) eim

′θ ,

0 ≤ ρ ≤ 1 , 0 ≤ θ ≤ 2π , (C2)

for integer n′, m′ such that n′ − |m′| is even and non-
negative. The evaluation of (C1) can be done using the
approach in [8]. Accordingly, focusing on the case ν1,
we have∫∫

S

Zm′

n′

(
ν−ν1

r

)
dν

=

∫∫
ν≤1

Zm′

n′

(
ν−ν1

r

)
Z0
0 (ν)

(
Z0
0

(
ν−ν2

r

)
Z0
0 (ν)

)∗
dν

=
∑
n,m

π
n+1 βm

n,1

(
βm
n,2

)∗
, (C3)

with βm
n,1 and βm

n,2 the Zernike coefficients with

respect to the unit disk of Zm′

n′

(
ν−ν1

r

)
Z0
0 (ν) and

Z0
0

(
ν−ν2

r

)
Z0
0 (ν), respectively. These β’s can be cast

into the form of a correlation integral as in [8], Eq. (8),

βm
n,1 = n+1

π

∫∫
Zm′

n′

(
ν−ν1

r

) (
Zm
n (−ν)

)∗
dν , (C4)

βm
n,2 = n+1

π

∫∫
Z0
0

(
ν−ν2

r

) (
Zm
n (−ν)

)∗
dν , (C5)

and these correlation integrals have been computed in
[8], Eq. (9) and Thm. 2.1. Thus (choosing c′ = r, c =
1, (τ ′, η′) = −ν1, (τ, η) = (o))

βm
n,1 = n+1

π

∑
n′′

Cm′m
n′n,n′′ Zm′−m

n′′

(
−ν1

r+1

)
, |ν1| ≤ r + 1 ,

(C6)

and a similar formula for βm
n,2. The summation in

Eq. (C6) is over all integers n′′ such that n′′ − (n′ + n)
is even and non-negative. The C’s are given as

Cm′m
n′n,n′′ =

(
r

r + 1

)2
(−1)n (n′′ + 1)π

(n′ + 1) (n+ 1)
× (C7)[

Sn′′+1
n′n − Sn′′+1

n′+2,n − Sn′′+1
n′,n+2 + Sn′′+1

n′+2,n+2

]
,

with

Sk+1
ij =

( 12 (k + i+ j))! ( 12 (k − i− j))!

( 12 (k + i− j))! ( 12 (k − i+ j))!
×

ri

(r + 1)i+j

(
P

(i,j)
1
2 (k−i−j)

(
1−r
1+r

))2

, (C8)

for integers i, j, k ≥ 0 such that k−i−j is non-negative

and even and Sk+1
i,j = 0 otherwise. The P

(α,β)
l (x) are

Jacobi polynomials, see [9], Ch. 22.
The series in Eqs.(C3) and (C6) are rather slowly

convergent, and so the computations must be done ef-
ficiently. The Sk+1

ij can be expressed in terms of the

generalized Zernike functions of [10] according to

ri

(r + 1)i+j

(
P

(i,j)
1
2 (k−i−j)

(
1−r
1+r

))2

= (1− ρ2)−
i
2 Rj,i

k−i(ρ) ,

(C9)
with ρ = (1+ r)−1/2 ∈ (0, 1). Finally, according to [10],
Thm. 5.2 (correcting two minor typos) the generalized
Zernike functions can be computed in a DFT-format as
follows. Let n and m be integers such that n − |m| is
even and non-negative, and let q = 1

2 (n+ |m|). Further-
more, let α > −1 and denote by Cα+1

n the Gegenbauer
polynomial of [9] Ch. 22. Then for any integer N such
that N > n+ |m|, we have(

q + α

q

)
(1− ρ2)−α R|m|,α

n (ρ) = (C10)

1
N

N−1∑
k=0

Cα+1
n (ρ cos 2πk

N ) e−2πi
km
N .

The prefactors

ak =
( 12 (k + i+ j))! ( 12 (k − i− j))!

( 12 (k + i− j))! ( 12 (k − i+ j))!
(C11)

in Eq. (C8) should be computed for all k such that k−i−
j is even and non-negative. We can do that recursively
according to

ak=i+j =

(
i+ j

i

)
, (C12)

and for k = i+ j, i+ j + 2, · · ·

ak+2 =
( 12 (k + i+ j) + 1) ( 12 (k − i− j) + 1)

( 12 (k + i− j) + 1) ( 12 (k − i+ j) + 1)
ak .

(C13)
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