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Abstract

The partial derivatives and Laplacians of the Zernike circle polynomials occur
in various places in the literature on computational optics. In a number of
cases, the expansion of these derivatives and Laplacians in the circle polyno-
mials are required. For the first-order partial derivatives, analytic results are
scattered in the literature, starting as early as 1942 in Nijboer’s thesis and
continuing until present day, with some emphasis on recursive computation
schemes. A brief historic account of these results is given in the present paper.
By choosing the unnormalized version of the circle polynomials, with expo-
nential rather than trigonometric azimuthal dependence, and by a proper
combination of the two partial derivatives, a concise form of the expressions
emerges. This form is appropriate for the formulation and solution of a model
wave-front sensing problem of reconstructing a wave-front on the level of its
expansion coefficients from (measurements of the expansion coefficients of)
the partial derivatives. It turns out that the least-squares estimation problem
arising here decouples per azimuthal order m, and per m the generalized in-
verse solution assumes a concise analytic form, so that SVD-decompositions
are avoided. The preferred version of the circle polynomials, with proper
combination of the partial derivatives, also leads to a concise analytic result
for the Zernike expansion of the Laplacian of the circle polynomials. From
these expansions, the properties of the Laplacian as a mapping from the space
of circle polynomials of maximal degree N , as required in the study of the
Neumann problem associated with the Transport-of-Intensity equation, can
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be read off within a single glance. Furthermore, the inverse of the Laplacian
on this space is shown to have a concise analytic form.

OCIS codes:
(000.3860) mathematical methods in physics; (080.1005) aberration expan-
sion; (050.1970) diffraction theory; (010.7350) wave-front sensing; (100.3190)
inverse problems.

1 Introduction and overview

The design and analysis of complex optical imaging systems is commonly
carried out with the aid of ray tracing. To obtain information about the
imaging quality of an optical system, a number of pencils of rays in the
object plane is defined and the rays of each pencil are traced from each
object point to the diaphragm of the optical system. The rays that intersect
the open area of the diaphragm are followed further through the interior of
the optical system and the point of intersection with the exit pupil sphere
is determined. By keeping track of the optical pathlength along each ray,
the difference in pathlength is established with respect to a reference ray. As
a result of the tracing of a large number of rays belonging to a particular
object point, the wave-front in the exit pupil can be computed, for instance,
by interpolation. For optical systems with wave-front aberrations that are
large with respect to the wavelength, the optical disturbance in the image
plane is calculated by tracing rays beyond the exit pupil and calculating
the intersection point with the image plane. In this way, the spot diagram
is obtained. For the calculation of the ray directions from the wave-front
surface data only, the gradient vector of the wave-front is needed. In [1]
normalized lateral coordinates (X1, Y1) on the exit pupil sphere are used. In
the image plane, scaled cartesian coordinates (x1, y1) are obtained by division
by the diffraction unit λ0/NA, with λ0 the vacuum wavelength and NA the
numerical aperture of the imaging pencils. With these canonical coordinates
[1] on the exit pupil sphere and in the image plane, the following compact
expression for the transverse ray aberration components in the image plane
is obtained,

δx1 =
∂W (X1, Y1)

∂X1

, δy1 =
∂W (X1, Y1)

∂Y1

. (1)

In a practical situation, with a more or less circular cross-section of a
pencil of rays or a propagating wave, the expansion of the wave-front aber-
ration with polynomials that are orthogonal on the unit circle is appropriate
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(Zernike polynomials). Polynomials defined on the exit pupil sphere that
allow an expansion of the transverse aberration components (δx1, δy1) have
been proposed by Lukosz [2], but these polynomials are not strictly orthog-
onal on the exit pupil.

Other computational problems can be imagined in which wave gradients
are needed. For instance, in electromagnetic problems, to calculate the en-
ergy and momentum flow, the wave normal has to be calculated over the
area of the wave-front [3]. In the case of adaptive optics wave-front correc-
tion, the local slope components of a wave-front are measured by means of
a Shack-Hartmann sensor [4]. In such a measurement problem, the gradient
components of a wave-front, sampled at a sufficiently large number of points,
have to be integrated to obtain the wave-front. The correction of turbulence
in the atmosphere during stellar observation is an example of such a com-
bined measurement and computational task. Fast and efficient algorithms
are needed because of the high temporal bandwidth of the turbulence effects
[5].

Higher-order derivatives of the wave-front function are used to improve
the reliability of the measurement data. For instance, second order deriva-
tives occur in [6], where the Euler principal curvatures and the azimuths
of the two corresponding principal planes are used in an enhanced wave-
front reconstruction method for adaptive optics. Higher-order derivatives of
the wave-front function W are also needed when approximate solutions of
Maxwell’s equations are pursued in free space [7]. For field solutions that are
valid far away from diffracting obstacles, at least in terms of the wavelength
of the light, an approximate solutions U(x, y, z; t) = Q(x, y, z) exp{i(kz−ωt)}
is used, with Q(x, y, z) = A(x, y, z) exp{ikW (x, y, z)}. It should be a slowly
varying solution of the (paraxial) wave equation,

∇2
tQ+ 2ik

∂Q

∂z
= 0 , (2)

where the subscript t means that only the derivatives with respect to the
transverse coordinates (x, y) need to be considered. The wave number k
equals nk0 with n the refractive index under consideration and k0 the wave
number of the radiation in vacuum.

The intensity function I = |A|2 can be shown to satisfy the intensity
transport equation [7]-[8],

−k∂I
∂z

= ∇t · [I∇t(kW )] = I∇2
t (kW ) +∇tI · ∇t(kW ) , (3)

in which second order derivatives of the wave-front function W need to be
made available.
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In this paper, we present analytic results for the gradients and Laplacians
of the Zernike circle polynomials Zm

n , in the unnormalized version with ex-
ponential azimuthal dependence, into which any wave-front function W can
be thought to be expanded. These results are useful in formulating and solv-
ing the reconstruction problem of wave-front functions from their first-order
partial derivatives, and for tracking the solution of the Transport-of-Intensity
equation, on the level of Zernike expansion coefficients. Choosing normalized
Cartesian coordinates ν, µ on the unit disk ν2 + µ2 ≤ 1, it turns out to be
convenient to combine the partial derivatives ∂W

∂ν
, ∂W
∂µ

according to ∂W
∂ν

+i ∂W
∂µ

and ∂W
∂ν
− i ∂W

∂µ
, in accordance with two formulas for derivatives of the circle

polynomials in polar coordinates as presented by Lukosz in [2], Anhang II.
Assuming to have available (measurements of the) Zernike coefficients of
the two combinations ∂W

∂ν
± i ∂W

∂µ
, the least-squares problem of estimating the

Zernike coefficients of the wave-front function itself has a very tractable form:
The problem decouples per m, and, for any m, the pseudo-inverse solution
(AHA)−1AHc can be computed explicitly. The least-squares estimate of the
expansion coefficient for azimuthal order m and degree n is an explicit linear
combination of the empirical coefficients of ∂W

∂ν
+ i ∂W

∂µ
of order m + 1 and

degrees n−1, n+ 1 and of ∂w
∂ν
− i ∂W

∂µ
of order m−1 and degrees n−1, n+ 1.

Secondly, the Laplacian ∆ = ∇2 can be written as ( ∂
∂ν

+ i ∂
∂µ

)( ∂
∂ν
− i ∂

∂µ
),

and this yields a very concise and explicit formula for the Laplacian of the
Zernike circle polynomials, and, hence, for any wave-front function W devel-
oped into the circle polynomials. Moreover, ∆−1Zm

n can be shown to be an
explicit linear combination of 3 circle polynomials of azimuthal order m.

The paper is organized as follows. In Section 2, we present the basic
formulas concerning the first-order partial derivatives of Zernike circle poly-
nomials and first-order derivatives of the radial polynomials. We use here
the Born-and-Wolf convention [3] with upper index m the azimuthal order
and lower index n the degree, and with exponential azimuthal dependence
exp(imϑ). We also give in Section 2 an account of the development of the re-
sults on first-order partial derivatives. In Section 3, we consider the problem
of estimating the Zernike coefficients of a wave-front function W from (esti-
mates of) the Zernike coefficients of the partial derivatives of first order of W .
In Section 4, we compute the Laplacians and the inverse Laplacians of the
circle polynomials, and we make a connection with the work of Gureyev et
al. in [8] on the Neumann problem associated with the Transport-of-Intensity
equation. In Appendix A, we present the proofs of the results that give the
action of the operators ∂

∂ν
± i ∂

∂µ
in terms of the Zernike coefficients of a

wave-front function W , the associated adjoint operators, and the generalized
inverse required in the estimation problem of Section 3. In Appendix B, we
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present results on the inversion of certain special matrices that give rise to
the explicit results in Sections 3, 4 on the inverse operators.

2 First-order derivatives of the circle polyno-

mials

For integer n and m with n− |m| even and non-negative, we let, permitting
ourselves some notational liberty,

Zm
n (ν, µ) = Zm

n (ρ, ϑ) = R|m|n (ρ) eimϑ , (4)

where we have set for real ν, µ with ν2 + µ2 ≤ 1

ν + iµ = ρ exp(iϑ) ; ν = ρ cosϑ , µ = ρ sinϑ , (5)

and where the radial polynomials R
|m|
n are given as

R|m|n (ρ) = P
(0,|m|)
n−|m|

2

(2ρ2 − 1) (6)

with P
(α,β)
k (x) the Jacobi polynomial of degree k corresponding to the weight

function (1 − x)α(1 + x)β on [−1, 1]. We set, furthermore, Zm
n ≡ 0 for all

integer n and m, with n− |m| odd or negative.

2.1 Basic identities for first-order derivatives

Let n and m be integers with n − |m| even and non-negative. It follows
from basic considerations about product functions as in Eq. (4) in Cartesian
and polar coordinates that( ∂

∂ν
± i ∂

∂µ

)
Zm
n (ν, µ)

=
( ∂
∂ν
± i ∂

∂µ

)
[R|m|n ((ν2 + µ2)1/2) exp[im arctan(µ/ν)]]

= ((R|m|n )′(ρ)∓ m

ρ
R|m|n (ρ)) exp[i(m± 1)ϑ] , (7)

where the ′ on the last line of Eq. (7) denotes differentiation with respect to
ρ. Next, see Subsection 2.2 for comments, there is the identity( d

dρ
± m

ρ

)
(R|m|n −R

|m|
n−2) = 2nR

|m∓1|
n−1 , (8)
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where we recall the conventions of the beginning of this section. Using Eq. (8)
with n− 2l where l = 0, 1, ..., 1

2
(n− 1− |m∓ 1|), instead of n, summing over

l, and using the observation that( d
dρ
± m

ρ

)
R
|m|
n−2−(n−1−|m∓1|) =

( d
dρ
± m

ρ

)
R
|m|
|m∓1|−1 = 0 (9)

in all cases, we get

( d
dρ
± m

ρ

)
R|m|n = 2

1
2
(n−1−|m∓1|)∑

l=0

(n− 2l)R
|m∓1|
n−1−2l . (10)

It is sometimes convenient to realize that, in all cases, we can replace the
upper summation limit in the series at the right-hand side of Eq. (10) by
1
2
(n − |m|) since all terms additionally included or excluded vanish by our

conventions. We will also write the right-hand side of Eq. (10) as

2
∑

n′=|m∓1|(2)(n−1)

(n′ + 1)R
|m∓1|
n′ , (11)

where for integer j, i with j − i even and non-negative

k = i(2)j means k = i, i+ 2, ..., j . (12)

We get from Eqs. (7) and (10), using in the latter upper summation limit
1
2
(n− |m|) as explained,

( ∂
∂ν
± i ∂

∂µ

)
Zm
n (ν, µ) = 2

1
2
(n−|m|)∑
l=0

(n− 2l)Zm±1
n−1−2l . (13)

Adding and subtracting the two identities in Eq. (13), we get

∂Zm
n

∂ν
=

1
2
(n−|m|)∑
l=0

(n− 2l)Zm−1
n−1−2l +

1
2
(n−|m|)∑
l=0

(n− 2l)Zm+1
n−1−2l , (14)

and

∂Zm
n

∂µ
= i

1
2
(n−|m|)∑
l=0

(n− 2l)Zm−1
n−1−2l − i

1
2
(n−|m|)∑
l=0

(n− 2l)Zm+1
n−1−2l . (15)

Alternatively, from Eqs. (7) and (8), we get the recursive relation( ∂
∂ν
± i ∂

∂µ

)
Zm
n =

( ∂
∂ν
± i ∂

∂µ

)
Zm
n−2 + 2nZm±1

n−1 , (16)
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from which the recursions

∂Zm
n

∂ν
=
∂Zm

n−2

∂ν
+ n(Zm−1

n−1 + Zm+1
n−1 ) (17)

and
∂Zm

n

∂µ
=
∂Zm

n−2

∂µ
+ in(Zm−1

n−1 − Zm+1
n−1 ) (18)

for the separate first-order partial derivatives follow.

2.2 History of the basic identities

The basic identities in Subsection 2.1 have been (re)discovered, in one or
another form, at various places in the optics literature from 1942 onwards.
We give here a brief historic survey of what we have found in this respect.
While the basic identities, as presented in Subsection 2.1, are given for general
integer m, almost all writers on the subject make the restriction m = 0, 1, ... .
Showing validity of these identities for general m from validity for m = 0, 1, ...
is straightforward but requires some care. For instance, for showing that
Eq.(8) holds generally from validity of it for m = 0, 1, · · · (− -sign on the
left-hand side) and for m = 1, 2, · · · (+ -sign on the left-hand side), one has
to consider the cases m = 0 and m < 0 separately. For m = 0, one then
uses the valid identity with m = 0 and the − -sign on the left-hand side.
For m < 0 one uses the valid identities with −m instead of m and uses that
−m− 1 = |m+ 1|, −m+ 1 = |m− 1|.

The series identity in Eq. (10) with m ≥ 1 and the +-sign has been given
in Nijboer’s 1942 thesis [9] as Eq. (2, 31), where the proof uses methods from
complex function theory. The two identities in Eq. (8) have been given in
1962 by Lukosz in [2], Anhang II, Eqs. (AII.4a,b) for the case that m ≥ 0,
using the monomial representation

R|m|n (ρ) =

1
2
(n−|m|)∑
s=0

( n− s
1
2
(n− |m|)

)( 1
2
(n− |m|)

s

)
ρn−2s (19)

of the radial polynomials. Lukosz writes m∓1 instead of |m∓1| at the right-
hand side of Eq. (8), which makes the result as presented by him somewhat
doubtful in case that m = 0. The recursion

d

dρ
(R|m|n −R

|m|
n−2) = n(R

|m−1|
n−1 +R

|m+1|
n−2 ) , (20)

that follows from Eq. (8) by adding the ±-cases, has been presented for
the case m ≥ 0 in 1976 by Noll in [5] as Eq. (13). Noll uses the integral
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representation

R|m|n (ρ) = (−1)
n−m

2

∞∫
0

Jn+1(t) Jm(ρt) dt , 0 ≤ ρ < 1 , (21)

also see [10], item 10.22.56, of the radial polynomials, together with recursion
formulas for Bessel functions and their derivatives. The two series equations
in Eq. (10) have been presented for the case that m ≥ 0 in 1987 by Braat as
[11], Eqs. (10a,b), using Nijboer’s result [9], Eq. (2, 31) for the +-case and an
argument based on the monomial representation in Eq. (19) for the −-case
(with a somewhat doubtful result for the case m = 0). In Braat’s forthcom-
ing book [12], the two series identities in Eq. (10) are proved by establishing
Eq. (8) via the integral result in Eq. (21), using recursions for Bessel func-
tions, and an induction step to go from Eq. (8) to Eq. (10). The identities
in Eqs. (17–18) have been given in 1999 by Capozzoli as [13], Eqs. (10, 12)
for m ≥ 0 and the versions of the circle polynomials with both the expo-
nential and trigonometric dependence on ϑ (the case m = 0 again being
somewhat doubtful). The series representations in Eqs. (14–15), for nor-
malized circle polynomials with trigonometric azimuthal dependence, have
been given in 2009 by the American National Standards Institute (ANSI) as
[14], Eqs. (B.8–9). A similar thing has been done in 2014 by Stephenson in
[15], Eqs. (30–31). Both ANSI and Stephenson base their derivation on the
recursion in Eq. (20) that they ascribe to Noll.

3 Zernike-based solution of a basic problem

in wave-front sensing

In this section we consider the problem of estimating the Zernike coefficients
of a wave-front function W (ν, µ) from the Zernike coefficients of the first-
order partial derivatives of W . At this point, we do not want to be more
specific about how the latter coefficients have been obtained (analytically,
semi-analytically or numerically, experimentally from matching on a set of
sample points on the unit disk, etc.).

We start with the Zernike expansion of W ,

W (ν, µ) =
∞∑

m=−∞

∑
n=|m|(2)∞

αmn Z
m
n (ν, µ) , (22)

with
α = (αmn ) m = −∞, ...,∞,

n = |m|(2)∞
, (23)
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an aggregate of unknown Zernike coefficients, and where n = |m|(2)∞ de-
notes n = |m|, |m| + 2, ... . When considering aggregates as in Eq. (23), it
is sometimes convenient to set αmn = 0 when n < |m|. We assume that
empirical Zernike coefficients of ∂W

∂ν
and ∂W

∂µ
are available, and we let

β± = ((β±)mn ) m = −∞, ...,∞,
n = |m|(2)∞

(24)

be the aggregates of these empirical Zernike coefficients corresponding to
∂W
∂ν
± i ∂W

∂µ
. It is shown in Appendix A from Eq.(13) that the analytical

aggregates β± of Zernike coefficients of ∂W
∂ν
± i ∂W

∂µ
are given in terms of the

aggregate α of Zernike coefficients of W by

β± = A±α =
(

2(n+ 1)
∑

n′=n(2)∞

αm∓1
n′+1

)
m = −∞, ...,∞,
n = |m|(2)∞

. (25)

In the matrix-vector notation just developed, we should therefore choose α
such that a best match occurs between β± of Eq. (24) and A±α of Eq. (25).

In the space ZC of aggregates γ = (γmn )m=−∞,...,∞, n=|m|(2)∞ of Zernike
coefficients, we take as inner product norm

‖γ‖2ZC = (γ,γ)ZC =
∞∑

m=−∞

∑
n=|m|(2)∞

|γmn |2

2(n+ 1)
. (26)

This inner product is consistent with the normalization condition∫ ∫
ν2+µ2≤1

|Zm
n (ν, µ)|2 dνdµ =

1

2(n+ 1)
(27)

of the circle polynomials. Thus, we choose α ∈ ZC such that

‖Aα− β‖2ZC2 = ‖A+α− β+‖2ZC + ‖A−α− β−‖2ZC (28)

is minimal. Here we have set in a symbolic matrix notation

A =
[A+

A−

]
; Aα =

[A+α

A−α

]
∈ ZC2 , β =

[ β+

β−

]
∈ ZC2 , (29)

and ‖γ‖ZC2 = |γ+‖2ZC +‖γ−‖2ZC is the inner product norm for a γ = [
γ+

γ−
] ∈

ZC2.
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The least-squares α is found by the usual linear algebra methods of gen-
eralized inverses as

α̂ = (AHA)−1AH β , (30)

where AH is the adjoint of the operator A in Eq. (29), relative to the inner
product ( , )ZC2 in ZC2. The operator AH is computed in Appendix A as

AH δ = AH+ δ+ + AH− δ− , δ =
[ δ+

δ−

]
∈ ZC2 , (31)

with

AH± γ =
(

2(n+ 1)
∑

n′=|m|(2)n

γm±1
n′−1

)
m = −∞, ...,∞,
n = |m|(2)∞

, γ ∈ ZC . (32)

The operator AHA is computed in Appendix A as

AHAγ =
(

4(n+1)
∑

n′=|m|(2)∞

Bm
n∧n′ γ

m
n′

)
m = −∞, ...,∞,
n = |m|(2)∞

, γ ∈ ZC , (33)

where
n ∧ n′ = min(n, n′) (34)

and, for n′′ = |m|(2)∞,

Bm
n′′ = |m|+ 1

2
(n′′ − |m|)(n′′ + |m|+ 2) . (35)

Thus α̂ is found by solving

AHAα = AH β . (36)

It follows from Eqs. (31–32) that

(AH β)mn = 2(n+ 1)
∑

n′=|m|(2)n

((β+)m+1
n′−1 + (β−)m−1

n′−1) , (37)

and so, by Eq. (33), we should find the α’s from∑
n′=|m|(2)∞

Bm
n∧n′ α

m
n′ = ψmn , n = |m|(2)∞ , (38)

where we have set

ψmn =
∑

n′=|m|(2)n

1
2

((β+)m+1
n′−1 + (β−)m−1

n′−1) , (39)

10



and where the B’s are given by Eqs. (34–35). Note that B0
0 = ψ0

0 = 0, and
so Eq. (38) with m = n = 0 leaves α0

0 undetermined. Also note that Eq. (38)
allows solving amn′ per separate m.

The linear system in Eq. (38) is considered for finite I = 0, 1, ... , and
assumes the particular simple form

I∑
j=0

Mij xj = ci , i = 0, 1, ..., I , (40)

where M is an (I + 1)× (I + 1) matrix of the form

M = (bmin(i,j))i,j=0,1,...,I . (41)

The right-hand side c = (ci)i=0,1,...,I of Eq. (40) has the form

c = L1 d , (42)

where, see Eqs.(38, 39)

d = (dk)k=0,1,...,I = (ϕm|m|+2k)k=0,1,...,I , (43)

with
ϕmn′ = 1

2
(β+)m+1

n′−1 + 1
2

(β−)m−1
n′−1 , (44)

and L1 is the (I + 1) × (I + 1) lower triangular matrix with all entries 1
on and below the main diagonal. This L1 is the inverse L−1 of the lower
triangular, bidiagonal matrix L considered in Eq. (B1). Thus the required
solution x = (xj)j=0,1,...,I is given as

x = M−1L1 d = (LM)−1 d . (45)

In Appendix B it is shown that

(LM)−1 =



a0 −a1 0 0

0 a1 −a2

aI−1 −aI
0 0 aI


(46)

(upper triangular, bidiagonal (I+1)×(I+1) matrix with a0, a1, ..., aI on the
main diagonal and −a1,−a2, ...,−aI on the first upper co-diagonal), where

aj =
1

bj − bj−1

, j = 0, 1, ..., I , (47)
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with bj from Eq. (41) and where we have set b−1 = 0. Thus we get

xj = ajdj − aj+1dj+1 , j = 0, 1, ..., I − 1 ; xI = aIdI . (48)

In the present case, we have

bj = Bm
|m|+2j = |m|+ 2j(|m|+ j + 1) , j = 0, 1, ..., I , (49)

and so we get

a0 =
1

|m|
; aj =

1

2(|m|+ 2j)
, j = 1, 2, ..., I . (50)

For the case m = 0, we have b0 = B0
0 = 0, and one should delete the first

row and column of the M -matrix in Eq. (41) and solve for x1, x2, ..., xI .
With dj given in Eq. (43) and aj given in Eq. (50), we can then write the

solution of the finitized Eq. (38) as

α̂mn = Cm
n ϕ

m
n − Cm

n+2 ϕ
m
n+2 , n = |m|(2)(|m|+ I − 2) , (51)

α̂m|m|+2I = Cm
|m|+2I ϕ

m
|m|+2I , (52)

where ϕmn are given by Eq. (44) and

Cm
|m| =

1

|m|
, n = |m| ; Cm

n =
1

2n
, n = (|m|+ 2)(2)(|m|+ 2I) . (53)

In Eq. (51, we consider n = 2(2)(I − 2) in the case that m = 0.
It is important to note that the finitization to linear systems of order

(I + 1)× (I + 1) has virtually no influence on the computed α̂mn , except for
the validity range n = |m|(2)(|m|+ 2I − 2).

It is relatively straightforward to check that Eqs.(51, 53) yield αmn =
δmm1 δnn1 when W = Zm1

n1
and the partial derivative data β± are perfect

(integer n1,m1 with n1 − |m1| even and non-negative, and 0 < n1 ≤ |m1| +
2I − 2).

Observe that α̂mn in Eq. (51) is a linear combination of the 4 numbers
(β±)m±1

n′ with n′ = n− 1, n+ 1.

4 Zernike expansion of the Laplacian and the

inverse Laplacian of circle polynomials

Higher-order partial derivatives of wave-front functions occur in various places
in the optics literature on wave-front reconstruction and ophthalmics. In [16],

12



wave-front reconstruction from defocused images in an astronomical setting
is considered, and for this conservation of the intensity flux requires studying
Jacobians of transformations that involve the second-order partial deriva-
tives of the aberration. In [8], a detailed study is made of the action of the
Laplacian on the linear space ZN+2 spanned by the circle polynomials with
degree not exceeding N + 2 as a mapping into ZN in connection with the
Transport-of-Intensity equation. In particular, one is interested in solving
the Neumann problem of finding ϕ ∈ ZN+2 from −∆ϕ = f ∈ ZN with
∂nϕ = ψ on the boundary of the disk. Such a problem is also considered,
with boundary function ψ = 0, in [17]. The Neumann problem in question
has been considered as a classical object in mathematical physics in [16],
Section 2, and a motivation for why a Zernike-based solution is sought after,
is given in the beginning of Subsection 3.A in [16]. Finally, in [14], one is in
principle interested in the partial derivatives of the circle polynomials of all
orders in order to study the effect of decentration of the optical system. Here
one aims at obtaining a Zernike expansion of a displaced wave-front function
W (ν + ν0, µ+ µ0) from such an expansion of W (ν, µ) by Taylor expansion.

In this section, we concentrate on the Laplacians of the circle polynomials,
and we show that for integer n and m such that n − |m| is even and non-
negative

( ∂2

∂ν2
+

∂2

∂µ2

)
Zm
n = 4

1
2
(n−|m|)−1∑
t=0

(n− 1− 2t)(n− t)(t+ 1)Zm
n−2−2t . (54)

From this formula, many of the observations made in [8] are verified instantly.
Sinilar, but somewhat more complicated, series expressions can be shown to
hold for the three second-order partial derivatives of Zm

n separately.
To show Eq. (54), we observe that

∂2

∂ν2
+

∂2

∂µ2
=
( ∂
∂ν

+ i
∂

∂µ

)( ∂
∂ν
− i ∂

∂µ

)
, (55)

and so, we get from Eq. (13) with summation upper limits 1
2

(n−1−|m±1|)

13



that

( ∂2

∂ν2
+

∂2

∂µ2

)
Zm
n = 2

n−1−|m−1|
2∑
l=0

(n− 2l)
( ∂
∂ν

+ i
∂

∂µ

)
Zm−1
n−1−2l

= 2

n−1−|m−1|
2∑
l=0

n−1−2l−1−|m−1+1|
2∑

k=1

2(n− 1− 2l − 2k)Zm−1+1
n−1−2l−1−2k

= 4

n−1−|m−1|
2∑
l=0

n−2l−2−|m|
2∑

k=0

(n− 2l)(n− 1− 2l − 2k)Zm
n−2−2l−2k . (56)

We must now carefully rearrange the double series on the last line of Eq. (56).
First, we have that

n− 1− |m− 1|
2

=

{
1
2

(n− |m|) , m ≥ 1 ,

1
2

(n− |m|)− 1 , m ≤ 0 .
(57)

In the case that m ≥ 1 and l = 1
2

(n − |m|), we have that the summation
over k in the last line of Eq. (56) is empty, and so we can delete the term
with l = 1

2
(n− |m|). Hence, in all cases

( ∂2

∂ν2
+

∂2

∂µ2

)
Zm
n = 4

p−1∑
l=0

p−1−l∑
k=0

(n− 2l)(n− 1− 2l − 2k)Zm
n−2−2l−2k , (58)

where we have set p = 1
2

(n−|m|). The summation in Eq. (58) can be written
as

4

p−1∑
t=0

∑
l,k≥0 ; l+k=t

(n− 2l)(n− 1− 2t)Zm
n−2−2t

= 4

p−1∑
t=0

(n− 1− 2t)Zm
n−2−2t Snt , (59)

where

Snt =
∑

l,k≥0 ; l+k=t

(n− 2l) =
t∑
l=0

(n− 2l) = (n− t)(t+ 1) , (60)

and we arrive at the result of Eq. (54). In Table I, third column, we display
∆Zm

n for m ≥ 0 and n ≤ 6.
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Table I: Equations (54) and (68) for Zm
n with m ≥ 0, n ≤ 6.

m n ∆Zm
n ∆−1Zm

n

0 0 0 1
8
Z0

2

0 2 8Z0
0

−1
16
Z0

2 + 1
48
Z0

4

0 4 48Z0
2 + 24Z0

0
1
80
Z0

2 − 1
48
Z0

4 + 1
120

Z0
6

0 6 120Z0
4 + 120Z0

2 + 48Z0
0

1
168

Z0
4 − 1

96
Z0

6 + 1
224

Z0
8

1 1 0 1
24
Z1

3

1 3 24Z1
1

−1
30
Z1

3 + 1
80
Z1

5

1 5 80Z1
3 + 64Z1

1
1

120
Z1

3 − 1
70
Z1

5 + 1
168

Z1
7

2 2 0 1
48
Z2

4

2 4 48Z2
2

−1
48
Z2

4 + 1
120

Z2
6

2 6 120Z2
4 + 120Z2

2
1

168
Z2

4 − 1
96
Z2

6 + 1
224

Z2
8

3 3 0 1
80
Z3

5

3 5 80Z3
3

−1
70
Z3

5 + 1
168

Z3
7

4 4 0 1
120

Z4
6

4 6 120Z4
4

−1
96
Z4

6 + 1
224

Z4
8

5 5 0 1
168

Z5
7

6 6 0 1
224

Z6
8

With the notation introduced in Eq. (12), we can write Eq. (54) concisely
as

∆Zm
n =

∑
s=|m|(2)(n−2)

(s+ 1)(n+ s+ 2)(n− s)Zm
s . (61)

We next consider, as in [8], for a given integer N ≥ 0, the Neumann
problem

−∆ϕ = f , ∂nϕ = ψ , (62)

where f belongs to the linear space ZN spanned by all circle polynomials of
degree ≤ N , and ψ = ψ(ϑ) is a periodic function of degree ≤ N + 2 (and
thus a linear combination of exp[imϑ], integer m, |m| ≤ N + 2).
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We let ZmN and ZmN+2, for integer m with |m| ≤ N , be the spaces spanned
by the circle polynomials of azimuthal order m and of degree ≤ N and N+2,
respectively. It is seen from Eq. (61) that ∆ maps ZmN+2 into ZmN and that
∆Zm

|m| = 0. Furthermore, the matrix Bm of ∆, when choosing in ZmN and
ZmN+2 the orthogonal basis of circle polynomials of azimuthal order m and
degree ≤ N and N+2, respectively, is lower triangular. The matrix elements
Bm
ns are given by

Bm
ns =

{
(s+ 1)(n+ s+ 2)(n− s) , s = |m|(2)(n− 2) ,

0 , s = n(2)Nm ,
(63)

where
Nm = |m|+ 2b1

2
(N − |m|)c (64)

so that Nm = N or N − 1 according as N and |m| have same or opposite
parity. Observing that Bn,n−2 6= 0, it follows that the functions ∆Zm

n , n =
(|m|+ 2)(2)(Nm + 2) are independent, and so ∆ maps ZmN+2 onto ZmN .

For solving −∆ϕ = f , see Eq. (62), we develop f as

f =
N∑

m=−N

∑
n′=|m|(2)Nm

αmn′ Z
m
n′ . (65)

It is seen that the basic problem is to solve βmn for a given m, |m| ≤ N , and
a given n′ = |m|(2)Nm from the linear equations

∆
( ∑
n=(|m|+2)(2)(Nm+2)

βmn Z
m
n

)
= Zm

n′ . (66)

In terms of the matrix elements Bm
ns in Eq. (63), the Eq. (66) can be written

as ∑
n=s(2)Nm

Bm
n+2,s β

m
n+2 = δsn , s = |m|(s)Nm . (67)

It is shown in Appendix B that the linear system in Eq. (67) can be solved
explicitly, with the result

Zm
n′ = ∆

[ 1

4(n′ + 2)(n′ + 1)
Zm
n′+2 −

1

2n′(n′ + 2)
Zm
n′ +

1

4n′(n′ + 1)
Zm
n′−2

]
,

(68)
where we recall that ∆Zm

n = 0 when n ≤ |m|. The result of Eq. (68) is
illustrated in Table I, fourth column for Zm

n with m ≥ 0 and n ≤ 6.
Having solved the problem in Eq. (66), and therefore, by linear combi-

nation with f as in Eq. (65), the problem −∆ϕ = f ∈ ZN , it remains to
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satisfy the boundary condition ∂nϕ = ψ, see Eq. (62). This problem can
be solved in the same manner as this is done in [8], pp. 1936–37, where a
linear combination of Zm

|m|, m = −N, ..., N , is used to satisfy this boundary
condition. To this end, it is useful to note that

∂n[Zm
n (ρ, ϑ)] = (R|m|n )′(1) exp[imϑ] = 1

2
(n(n+ 2)−m2) exp[imϑ] , (69)

so that ∂n[Zm
m(ρ, ϑ)] = |m| exp[imϑ]. Thus, the solution ϕ0 of −∆ϕ0 = f ,

not comprising any Zm
|m|, has computable Fourier coefficients of its normal

derivative ∂nϕ0 = ψ0, and the coefficients cm of Zm
|m| in the full ϕ should be

chosen such that |m| cm equals the mth Fourier coefficient of ψ − ψ0.

5 Conclusions

We have given a review of the results concerning the first-order Cartesian
derivatives of the Zernike circle polynomials. By choosing the version of the
circle polynomials with exponential azimuthal dependence and by proper
combination of the two first-order partial derivatives, the results have been
brought into a concise form. This form allows a convenient formulation
and solution of a basic problem in wave-front sensing in which the Zernike
coefficients of the wave-front function are to be estimated from the Zernike
coefficients of the first-order Cartesian derivatives. It has been shown that
the matrix inversion required for solving the ensuing least-squares problem
can be done analytically. The preferred version of the circle polynomials
together with proper combination of the first-order derivatives also leads to
a concise result for the Laplacians of the circle polynomials. This concise
result has been used to find an explicit formula for the inverse Laplacian
of any circle polynomial. This yields a concise solution of the Neumann
problem, that occurs when studying the Transport-of-Intensity equation on
spaces of circle polynomials with radial degree not exceeding a fixed number.

Appendix A: Proofs of the properties of A± in

Section 3

In this appendix, we prove the results on the operators A± and A as used in
Section 3. We start with the proof of Eq. (25) that expresses the aggregate of
Zernike expansion coefficients β± of ∂W

∂ν
± i ∂W

∂µ
in terms of the corresponding

aggregate α of W , see Eq. (22). With integer m1, n1, such that n1 − |m1|
is even and non-negative, we shall verify Eq. (25) directly for the case that
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W = Zm1
n1

so that αmn = δm1m δn1n. The identity to be verified is

∂W

∂ν
± i ∂W

∂µ
= 2

∞∑
m=−∞

∑
n=|m|(2)∞

(n+ 1)
( ∑
n′=n(2)∞

αm∓1
n′+1

)
Zm
n . (A1)

With αmn = δm1m δn1n, it is seen that in the series over m in Eq. (A1) only the
term m with m∓ 1 = m1 is non-vanishing, and so we should only consider

2
∑

n=|m1±1|(2)∞

( ∑
n′=n(2)∞

(n+ 1)αm1

n′+1

)
Zm1±1
n . (A2)

With n = |m1 ± 1|(2)∞, we have that

∑
n′=n(2)∞

αm1

n′+1 =

{
1 , n+ 1 ≤ n1 ,

0 , otherwise .
(A3)

Hence, the expression in Eq. (A2) equals

2
∑

n=|m1±1|(2)(n1−1)

(n+ 1)Zm1±1
n = 2

∑
n=(|m1±1|+1)(2)n1

nZm1±1
n−1

= 2

1
2
(n1−1−|m1±1|)∑

l=0

(n1 − 2l)Zm1±1
n1−1−2l =

( ∂
∂ν
± i ∂

∂µ

)
Zm1
n1

(A4)

according to Eq. (13) with summation of non-zero terms only. This shows
Eq. (25) for the case that W = Zm1

n1
, and the general case follows from this

by linear superposition of terms Zm1
n1

in W with integer m1 and n1 such that
n1 − |m1| is even and non-negative.

We shall now compute AH and AHA, as required in Eq. (30) for the least
squares α. With γ, δ ∈ ZC2, written as

γ =
[ γ+

γ−

]
, δ =

[ δ+

δ−

]
, (A5)

where γ±, δ± ∈ ZC and with the notation of Eq. (29), we have

(Aγ, δ)ZC2 = (A+γ+, δ+)ZC + (A−γ−, δ−)ZC

= (γ+, A
H
+δ+)ZC + (γ−, A

H
−δ−)ZC = (γ, AHδ)ZC2 , (A6)

where AH± are the adjoints of A± and

AHδ = AH+δ+ + AH−δ− . (A7)
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We therefore need to determine AH± .
As to the +-case, we have for α ∈ ZC by Eq. (25)

A+α =
(

2(n+ 1)
∑

n′=n(2)∞

αm−1
n′+1

)
m = −∞, ...,∞,
n = |m|(2)∞

(A8)

Hence, with the definition of the inner product in ZC, see Eq. (26), we have
for α,β ∈ ZC that

(A+α,β)ZC =
∞∑

m=−∞

∑
n=|m|(2)∞

(A+α)mn (βmn )∗

2(n+ 1)

=
∞∑

m=−∞

( ∑
n=|m|(2)∞

( ∑
n′=n(2)∞

αm−1
n′+1

)
(βmn )∗

)

=
∞∑

m=−∞

( ∑
n′=|m|(2)∞

∑
n=|m|(2)n′

αm−1
n′+1 (βmn )∗

)

=
∞∑

m=−∞

( ∑
n′=(|m+1|+1)(2)∞

∑
n=|m+1|(2)(n′−1)

αmn′ (β
m+1
n )∗

)
.

(A9)

Now |m + 1| = m + 1 when m = 0, 1, ... and |m + 1| = |m| − 1 when
m = −1,−2, ... , and so

(A+α,β)ZC =
∞∑
m=0

( ∑
n′=(m+2)(2)∞

∑
n=(m+1)(2)(n′−1)

αmn′ (β
m+1
n )∗

)

+
−1∑

m=−∞

( ∑
n′=|m|(2)∞

∑
n=(|m|−1)(2)(n′−1)

αmn′ (β
m+1
n )∗

)

=
∞∑
m=0

( ∑
n′=(m+2)(2)∞

∑
n=(m+2)(2)n′

αmn′ (β
m+1
n−1 )∗

)

+
−1∑

m=−∞

( ∑
n′=|m|(2)∞

∑
n=|m|(2)n′

αmn′ (β
m+1
n−1 )∗

)
. (A10)

The terms βm+1
n−1 with n = m in the first triple series in the last member of

Eq. (A10) vanish, and so we can extend the n-summation range in this triple
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series to m(2)n′. Doing so, and subsequently extending the n′-summation
range to m(2)∞ in this same triple series, we get

(A+α,β)ZC =
∞∑
m=0

( ∑
n′=m(2)∞

∑
n=m(2)n′

αmn′ (β
m+1
n−1 )∗

)

+
−1∑

m=−∞

( ∑
n′=|m|(2)∞

∑
n=|m|(2)n′

αmn′ (β
m+1
n−1 )∗

)

=
∞∑

m=−∞

( ∑
n′=|m|(2)∞

∑
n=|m|(2)n′

αmn′ (β
m+1
n−1 )∗

)
. (A11)

Next, interchanging the summation indices n′ and n in the last line of
Eq. (A11), and throwing in a factor 2(n+ 1)/2(n+ 1), we get

(A+α,β)ZC =
∞∑

m=−∞

( ∑
n=|m|(2)∞

αmn (2(n+ 1)
∑

n′=|m|(2)n

βm+1
n+1 )∗

2(n+ 1)

)
= (α, AH+β)ZC , (A12)

where
AH+β =

(
2(n+ 1)

∑
n′=|m|(2)n

βm+1
n′−1

)
m = −∞, ...,∞,
n = |m|(2)∞

. (A13)

In an entirely similar fashion, we compute

(A−α,β)ZC = (α, AH−β)ZC , (A14)

where
AH−β =

(
2(n+ 1)

∑
n′=|m|(2)∞

βm−1
n′−1

)
m = −∞, ...,∞,
n = |m|(2)∞

. (A15)

We finally compute AHA = AH+A+ + AH−A. Thus for γ ∈ ZC, we have
from Eq. (32) that

(AH+A+γ)mn = 2(n+ 1)
∑

n′=|m|(2)n

(A+γ)m+1
n′−1 (A16)

when m, n are integer and n = |m|(2)∞. Now for n′ − 1 = |m+ 1|(2)∞, we
have from Eq. (25) that

(A+γ)m+1
n′−1 = 2(n′+1−1)

∑
n′′=(n′−1)(2)∞

γ
(m+1)−1
n′′+1 = 2n′

∑
n′′=n′(2)∞

γmn′′ . (A17)
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Hence

(AH+A+γ)mn = 2(n+ 1)
∑

n′ = |m|(2)n,
n′ − 1 ≥ |m + 1|

2n′
∑

n′′=n′(2)∞

γmn′′ . (A18)

In a similar fashion

(AH−A−γ)mn = 2(n+ 1)
∑

n′ = |m|(2)n,
n′ − 1 ≥ |m− 1|

2n′
∑

n′′=n′(2)∞

γmn′′ . (A19)

As to the conditions n′ − 1 ≥ |m + 1|, n′ − 1 ≥ |m − 1| that appear in the
summations in Eqs. (A18–A19), we note that

|m+ 1| =

{
|m|+ 1 , m ≥ 0

|m| − 1 , m < 0
, |m− 1| =

{
|m| − 1 , m > 0

|m|+ 1 , m ≤ 0 .

(A20)
Hence, we have n′ = (|m| + 2)(2)n when m ≥ 0 and n′ = |m|(2)n when
m < 0 in Eq. (A18), and n′ = |m|(2)n when m > 0 and n′ = (|m| + 2)(2)n
when m ≤ 0 in Eq. (A19). Therefore,

(AHAγ)mn = (AH+A+γ)mn + (AH−A−γ)mn

= 4(n+ 1)
∑

n′=|m|(2)n

∑
n′′=n′(2)∞

n′ εn′−|m| γ
m
n′′ , (A21)

where εk = 1 when k = 0 and εk = 2 when k = 2, 4, ... (Neumann’s symbol).
The formula in Eq. (A21) is also valid for m = 0, for n′ εn′−|m| γ

m
n′′ vanishes

when n′ = |m| = 0.
We rearrange the result of Eq. (A21) further as

(AHAγ)mn = 4(n+ 1)
∑

n′′=|m|(2)∞

γmn′′
∑

n′=|m|(2)(n′′∧n)

n′ εn′−|m| , (A22)

where k ∧ l is short-hand notation for min(k, l). Finally, for n′′′ = |m|(2)∞,
we have ∑

n′=|m|(2)n′′′

n′ εn′−|m| = |m|+ 1
2

(n′′′ − |m|)(n′′′ + |m|+ 2) , (A23)

and the result of Eq. (33) follows from Eqs. (A22–A23) upon changing n′′

into n′ in γmn′′ and n′ into n′′′ in
∑

n′ in Eq. (A22) and using Eq. (A23) with
n′′′ = n′ ∧ n = n ∧ n′.
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Appendix B: Inversion of some special matri-

ces

We shall first show that (LM)−1 is given by Eq. (46), where L is the (I +
1)× (I + 1) lower triangular matrix

L =


1 0 0 0

−1 1 0 0

0 −1 1

 (B1)

(bidiagonal matrix, with 1’s on the main diagonal and −1’s on the first lower
co-diagonal), and

M = (bmin(i,j))i,j=0,1,...,I =



b0 b0 b0 · · · b0

b0 b1 b1 · · · b1

b0 b1 b2 · · · b2
...

...

b0 b1 b2 · · · bI

 . (B2)

We have

LM =



b0 b0 b0 b0

0 b1 − b0 b1 − b0 b1 − b0

bI−1 − bI−2 bI−1 − bI−2

0 0 bI − bI−1


(B3)

(upper triangular matrix with (LM)ij = bi − bi−1, j = i, i + 1, ..., I for
i = 0, 1, ..., I and b−1 defined 0). Next, when U is the (I + 1)× (I + 1) upper
triangular matrix

U =



1 c0 0 0

0 1 c1

1 cI−1

0 0 1


, ci = − bi − bi−1

bi+1 − bi
, (B4)
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(bidiagonal matrix with 1’s on the main diagonal and ci, i = 0, 1, ..., I − 1 ,
on the first upper codiagonal), we have

ULM =


b0 − b−1 0 0

0 b1 − b0

0

0 0 bI − bI−1

 = D (B5)

(diagonal matrix with diagonal elements bi − bi−1, i = 0, 1, ..., I). Therefore,
D−1ULM = I, and Eq. (46) follows on computing D−1U from Eqs. (B4, B5).

We next determine the inverse of the matirx

(Bm
n+2,s)s,n=|m|(2)Nm (B6)

that occurs in Eq. (67), also see Eq. (63). With

s = |m|+ 2u , n = |m|+ 2k , u, k = 0, 1, ..., K , (B7)

where we have set K = 1
2

(Nm − |m|), the matrix in Eq. (B6) assumes the
form

C = (Cuk)u,k=0,1,...,K , (B8)

where

Cuk =

{
4(|m|+ 2u+ 1)(|m|+ k + u+ 2)(k + 1− u) , k ≥ u ,

0 , k < u ,
(B9)

for integer u, k, with 0 ≤ u, k ≤ K. Thus C = D1E, where D1 is the
(K + 1)× (K + 1) diagonal matrix with diagonal elements 8(|m|+ 2u + 1),
u = 0, 1, ..., K , and E is the upper triangular matrix with entries

Euk = 1
2

(|m|+ k + u+ 2)(k + 1− u) =
k∑
j=u

(1
2
|m|+ j + 1) (B10)

for 0 ≤ u ≤ k ≤ K. Setting dj = 1
2
|m|+ j + 1 for j = 0, 1, ..., K , and letting

U1, U2 the two bidiagonal upper triangular matrices, given by
1 −1 0 0

0 1 −1

1 −1

0 0 1

 ,


1 −d0/d1 0 0

0 1 −d1/d2

1 −dK−1/dK

0 0 1


(B11)
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respectively, it is seen that

U2(U1E) = U2


d0 d0 d0

0 d1 d1

0 0 dK

 =


d0 0 0

0 d1

0

0 0 dK

 = D2 . (B12)

Therefore, from E = D−1
1 C and Eq. (B12) we get

C−1 = D−1
2 U2U1D

−1
1 . (B13)

Finally, we compute U2U1 from Eq. (B11) as the upper triangular matrix
with 1’s on the main diagonal, −1− du/du+1, u = 0, 1, ..., K − 1 , on the first
upper codiagonal, du/du+1, u = 0, 1, ..., K−2 on the second upper codiagonal
and 0 elsewhere. Hence, with the definitions of D1 and D2 as given, we have
that C−1 is an upper triangular tridiagonal matrix whose non-zero entries
are given for k, k′ = 0, 1, ..., K by

(C−1)kk′ =
(U2 U1)kk′

4(|m|+ 2k + 2)(|m|+ 2k′ + 1)

=



1

4(|m|+ 2k + 2)(|m|+ 2k + 1)
, k = k′ ,

−1

2(|m|+ 2k + 2)(|m|+ 2k + 4)
, k = k′ − 1 ,

1

4(|m|+ 2k + 4)(|m|+ 2k + 5)
, k = k′ − 2 .

(B14)

From this the result of Eq. (68) can be obtained by restoring the index
n′ = |m|+ 2k.
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