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Abstract

The partial derivatives and Laplacians of the Zernike circle polynomials oc-
cur in various places in the literature on computational optics. In a number
of cases, the expansion of these derivatives and Laplacians in the circle poly-
nomials are required. For the first-order partial derivatives, analytic results
are scattered in the literature, starting as early as 1942 in Nijboer’s thesis
and continuing until present day, with some emphasis on recursive com-
putation schemes. A brief historic account of these results is given in the
present paper. By choosing the unnormalized version of the circle polynomi-
als, with exponential rather than trigonometric azimuthal dependence, and
by a proper combination of the two partial derivatives, a concise form of the
series expressions emerges. This form is appropriate for the formulation and
solution of a model wave-front sensing problem of reconstructing a wave-front
on the level of its expansion coefficients from (measurements of the expan-
sion coefficients of) the partial derivatives. It turns out that the least-squares
estimation problem arising here decouples per azimuthal order m, and per
m the generalized inverse solution assumes a concise analytic form, thereby
avoiding SVD-decompositions. The preferred version of the circle polynomi-
als, with proper combination of the partial derivatives, also leads to a concise
analytic result for the Zernike expansion of the Laplacian of the circle polyno-
mials. From these expansions, the properties of the Laplacian as a mapping
from the space of circle polynomials of maximal degree N , as required in the
study of the Neumann problem associated with the Transport-of-Intensity
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equation, can be read off within a single glance. Furthermore, the inverse of
the Laplacian on this space is shown to have a concise analytic form.

OCIS codes:

(000.3860) mathematical methods in physics; (080.1005) aberration expan-
sion; (050.1970) diffraction theory; (010.7350) wave-front sensing; (100.3190)
inverse problems.

1 Introduction and overview

The design and analysis of complex optical imaging systems is commonly
carried out with the aid of ray tracing. To obtain information about the
imaging quality of an optical system, a certain number of pencil of rays in
the object plane is defined and the rays of each pencil are traced from each
object point to the diaphragm of the optical system, see Fig. 1. The rays
that intersect the open area of the diaphragm are followed further through the
interior of the optical system and the point of intersection with the exit pupil
sphere is determined. By keeping track of the optical pathlength along each
ray, the difference in pathlength W

′
= [O0P1]− [O0E1], denoted by [P

′

1P1] in
the figure, can be established for each ray with respect to a certain reference
ray. In general, this is the ray O0E0EDE1 that passes through the axial
point ED of the diaphragm D. As a result of the tracing of a large number of
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Figure 1: A specific ray from the axial object point O0 intersects the en-
trance pupil sphere through E0 of an optical system in the point P0 and the
diaphragm in PD. The aberrated ray intersects the exit pupil sphere through
E1 in P1 and the image plane in A1. The wave-front belonging to the pencil
from O0 is the solid curve through E1 and P1.
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rays belonging to a particular object point, the wave-front in the exit pupil
can be computed, for instance, by interpolation. For optical systems with
wave-front deviations from a spherical surface that are large with respect to
the wavelength, the optical disturbance in the image plane is calculated by
tracing rays beyond the exit pupil and calculating the intersection point A1

with the image plane. In this way, the spot diagram is obtained. For the
calculation of the ray directions from the wave-front surface data only, the
gradient vector of the wave-front is needed. Following [1] and referring to
Fig. 1, we perform the coordinate transformations

X1 = X
′

1/ρ0 , Y1 = Y
′

1/ρ0 ,

x1 = x
′

1

n1 sinα1

λ0
, y1 = y

′

1

n1 sinα1

λ0
,

W =W
′

/λ0 , (1)

with λ0 the vacuum wavelength and n1 the refractive index in image space.
The lateral pupil coordinates on the exit pupil sphere have been normalized
with respect to the lateral diameter of the pencil of rays on the exit pupil
sphere. The image plane coordinates have been normalized with respect
to the diffraction unit in the image plane and the wave-front aberration is
expressed in units of the vacuum wavelength. Using these transformed pupil
and field coordinates, the transverse aberration O1A1 in the image plane
follows from

δx1 =
∂W (X1, Y1)

∂X1

, δy1 =
∂W (X1, Y1)

∂Y1
, (2)

where we have used the approximation P1A1 = R1 that is valid for modest
values of the angular aberration δ. In most practical optical imaging systems,
δ will not exceed 1 mrad. For a general off-axis point, the entrance and exit
pupil spheres are tilted such that their midpoints coincide with the paraxial
object and image points.

Eq.(2) shows that the gradient of the wave-front surface immediately
yields the transverse aberration components in cartesian coordinates. Using
normalized polar coordinates (ρ, θ) on the exit pupil sphere, we have

δx1 = cos θ
∂W (ρ, θ)

∂ρ
−

sin θ

ρ

∂W (ρ, θ)

∂θ
,

δy1 = sin θ
∂W (ρ, θ)

∂ρ
+

cos θ

ρ

∂W (ρ, θ)

∂θ
, (3)

or, in complex notation,
(

δx1
δy1

)

= ℜ

{

exp(iθ)

[

∂W

∂ρ
+
i

ρ

∂W

∂θ

](

1
−i

)}

. (4)
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If it is desirable, Eq.(4) can be used equally well for complex variables; this
is useful when W , the wave-front deviation in the exit pupil, is replaced by
the complex amplitude A(X, Y ) exp{ikW (X, Y )} on the exit pupil sphere.

In a practical situation, with a more or less circular cross-section of a
pencil of rays or a propagating wave, the expansion of the wave-front aber-
ration with polynomials that are orthogonal on the unit circle is appropriate
(Zernike polynomials). Polynomials defined on the exit pupil sphere that
allow an orthogonal Zernike expansion of the transverse aberration compo-
nents (δx1, δy1) have been proposed by Lukosz [2], but these polynomials are
not strictly orthogonal on the exit pupil.

Other computational problems can be imagined in which wave gradients
are needed. For instance, in electromagnetic problems, to calculate the en-
ergy and momentum flow, the wave normal has to be calculated over the
area of the wave-front [3]. In the case of adaptive optics wave-front correc-
tion, the local slope components of a wave-front are measured by means of
a Shack-Hartmann sensor [4]. In such a measurement problem, the gradient
components of a wave-front, sampled in a sufficiently large number of points,
have to be integrated to obtain the ideal wave-front. The correction of tur-
bulence in the atmosphere during stellar observation is an example of such
a combined measurement and computational task. Fast and efficient algo-
rithms are needed because of the high temporal bandwidth of the turbulence
effects [5].

Higher-order derivatives of the wave-front function are used to improve
the reliability of the measurement data. For instance, the Euler princi-
pal curvatures and the azimuths of the two corresponding principal planes
are used in an enhanced wave-front reconstruction method for adaptive op-
tics [6]. Higher-order derivatives of the wave-front function W are also
needed when approximate solutions of Maxwell’s equations are pursued in
free space [7]. For field solutions that are valid far away from diffracting
obstacles, at least in terms of the wavelength of the light, an approximate
solutions U(x, y, z; t) = Q(x, y, z) exp{i(kz − ωt)} is used, with Q(x, y, z) =
A(x, y, z) exp{ikW (x, y, z)}. It should be a slowly varying solution of the
(paraxial) wave equation,

∇2
tQ + 2ik

∂Q

∂z
+ k2Q = 0 , (5)

where the subscript t means that only the derivatives with respect to the
transverse coordinates (x, y) need to be considered. The wave number k
equals n k0 with k0 the wave number in vacuum of the radiation.

The intensity function I = AA∗ can be shown to satisfy the intensity
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transport equation [7]-[8],

− k
∂I

∂z
= ∇t · [I∇t(kW )] = I∇2

t (kW ) +∇tI · ∇t(kW ) , (6)

in which second order derivatives of the wave-front function W need to be
made available.
In this paper, we present analytic results for the gradients and Laplacians

of the Zernike circle polynomials Zm
n , in the unnormalized version with ex-

ponential azimuthal dependence, into which any wave-front function W can
be thought to be expanded. These results are useful in formulating and solv-
ing the reconstruction problem of wave-front functions from their first-order
partial derivatives, and for tracking the solution of the Transport-of-Intensity
equation, on the level of Zernike expansion coefficients. Choosing normalized
Cartesian coordinates ν, µ on the unit disk ν2 + µ2 ≤ 1, it turns out to be
convenient to combine the partial derivatives ∂W

∂ν
, ∂W

∂µ
according to ∂W

∂ν
+ i ∂W

∂µ

and ∂W
∂ν

− i ∂W
∂µ

, in accordance with two formulas for derivatives of the circle

polynomials in polar coordinates as presented by Lukosz in [2], Anhang II.
Assuming to have available (measurements of the) Zernike coefficients of
the two combinations ∂W

∂ν
± i ∂W

∂µ
, the least-squares problem of estimating

the Zernike coefficients of the wave-front function itself has a very tractable
form: The problem decouples per m, and, for any m, the pseudo-inverse
solution (AHA)−1AHc can be computed explicitly. Secondly, the Laplacian
∆ = ∇2 can be written as ( ∂

∂ν
+ i ∂

∂µ
)( ∂

∂ν
−i ∂

∂µ
), and this yields a very concise

and explicit formula for the Laplacian of the Zernike circle polynomials, and,
hence, for any wave-front function W developed into the circle polynomials.
Moreover, ∆−1Zm

n can be shown to be an explicit linear combination of 3
circle polynomials of azimuthal order m.

The paper is organized as follows. In Section 2, we present the basic
formulas concerning the first-order partial derivatives of Zernike circle poly-
nomials and first-order derivatives of the radial polynomials. As said, we use
here the Born-and-Wolf convention [3] with upper index m the azimuthal
order and lower index n the degree, and with exponential azimuthal de-
pendence exp(imϑ). We also give in Section 2 an account of the develop-
ment of the results on first-order partial derivatives, and we present relations
with Lukosz polynomials, pupil scaling and decentralization and generalized
Zernike functions. We also make some comments on computation of the
partial derivatives in Section 2. In Section 3, we consider the problem of es-
timating the Zernike coefficients of a wave-front function W from (estimates
of) the Zernike coefficients of the partial derivatives of first order of W . In
Section 4, we compute the Laplacians and the inverse Laplacians of the cir-
cle polynomials, and we make a connection with the work of Gureyev et al.
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in [8] on the Neumann problem associated with the Transport-of-Intensity
equation. In Appendix A, we present the proofs of the results that give the
action of the operators ∂

∂ν
± i ∂

∂µ
in terms of the Zernike coefficients of a

wave-front function W , the associated adjoint operators, and the generalized
inverse required in the estimation problem of Section 3. In Appendix B, we
present results on the inversion of certain special matrices that give rise to
the explicit results in Sections 3, 4 on the inverse operators.

2 First-order derivatives of the circle polyno-

mials

For integer n and m with n− |m| even and non-negative, we let, permitting
ourselves some notational liberty,

Zm
n (ν, µ) = Zm

n (ρ, ϑ) = R|m|
n (ρ) eimϑ , (7)

where we have set for real ν, µ with ν2 + µ2 ≤ 1

ν + iµ = ρ exp(iϑ) ; ν = ρ cos ϑ , µ = ρ sin ϑ , (8)

and where the radial polynomials R
|m|
n are given as

R|m|
n (ρ) = P

(0,|m|)
n−|m|

2

(2ρ2 − 1) (9)

with P
(α,β)
k (x) the Jacobi polynomial of degree k corresponding to the weight

function (1 − x)α(1 + x)β on [−1, 1]. We set, furthermore, Zm
n ≡ 0 for all

integer n and m, n− |m| odd or negative.

2.1 Basic identities for first-order derivatives

Let n and m be integers with n − |m| even and non-negative. It follows
from basic considerations about product functions as in Eq. (7) in Cartesian
and polar coordinates that

( ∂

∂ν
± i

∂

∂µ

)

Zm
n (ν, µ)

=
( ∂

∂ν
± i

∂

∂µ

)

[R|m|
n ((ν2 + µ2)1/2) exp[im arctan(µ/ν)]]

= ((R|m|
n )′(ρ)∓

m

ρ
R|m|

n (ρ)) exp[i(m± 1)ϑ] , (10)
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where the ′ on the last line of Eq. (10) denotes differentiation with respect
to ρ. Next, see Subsection 2.2 for comments, there is the identity

( d

dρ
±
m

ρ

)

(R|m|
n − R

|m|
n−2) = 2nR

|m∓1|
n−1 , (11)

where we recall the conventions of the beginning of this section. Using
Eq. (11) with n − 2l where l = 0, 1, ..., 1

2
(n − 1 − |m ∓ 1|), instead of n,

summing over l, and using the observation that

( d

dρ
±
m

ρ

)

R
|m|
n−2−(n−1−|m∓1|) =

( d

dρ
±
m

ρ

)

R
|m|
|m∓1|−1 = 0 (12)

in all cases, we get

( d

dρ
±
m

ρ

)

R|m|
n = 2

1
2
(n−1−|m∓1|)

∑

l=0

R
|m∓1|
n−1−2l . (13)

It is sometimes convenient to realize that, in all cases, we can replace the
upper summation limit in the series at the right-hand side of Eq. (13) by
1
2
(n − |m|) since all terms additionally included or excluded vanish by our

conventions. We will also write the right-hand side of Eq. (13) as

2
∑

n′=|m∓1|(2)(n−1)

R
|m∓1|
n′ , (14)

where for integer j, i with j − i even and non-negative

k = i(2)j means k = i, i+ 2, ..., j . (15)

We get from Eqs. (10) and (13), using in the latter upper summation limit
1
2
(n− |m|) as explained,

( ∂

∂ν
± i

∂

∂µ

)

Zm
n (ν, µ) = 2

1

2
(n−|m|)
∑

l=0

(n− 2l)Zm±1
n−1−2l . (16)

Adding and subtracting the two identities in Eq. (16), we get

∂Zm
n

∂ν
=

1

2
(n−|m|)
∑

l=0

(n− 2l)Zm−1
n−1−2l +

1

2
(n−|m|)
∑

l=0

(n− 2l)Zm+1
n−1−2l , (17)
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and

∂Zm
n

∂µ
= i

1

2
(n−|m|)
∑

l=0

(n− 2l)Zm−1
n−1−2l − i

1

2
(n−|m|)
∑

l=0

(n− 2l)Zm+1
n−1−2l . (18)

Alternatively, from Eqs. (10) and (11), we get the recursive relation

( ∂

∂ν
± i

∂

∂µ

)

Zm
n =

( ∂

∂ν
± i

∂

∂µ

)

Zm
n−2 + 2nZm±1

n−1 , (19)

from which the recursions

∂Zm
n

∂ν
=
∂Zm

n−2

∂ν
+ n(Zm−1

n−1 + Zm+1
n−1 ) (20)

and
∂Zm

n

∂µ
=
∂Zm

n−2

∂µ
+ in(Zm−1

n−1 − Zm+1
n−1 ) (21)

for the separate first-order partial derivatives follow.

2.2 History of the basic identities

The basic identities in Subsection 2.1 have been (re)discovered, in one or
another form, at various places in the optics literature from 1942 onwards.
We give here a brief historic survey of what we have found in this respect.
While the basic identities, as presented in Subsection 2.1, are given for general
integer m, almost all writers on the subject make the restriction m = 0, 1, ... .
Showing validity of these identities for generalm from validity form = 0, 1, ...
is straightforward but requires some care.

The series identity in Eq. (13) with m ≥ 1 and the +-sign has been given
in Nijboer’s 1942 thesis [9] as Eq. (2, 31), where the proof uses methods from
complex function theory. The two identities in Eq. (11) have been given in
1962 by Lukosz in [2], Anhang II, Eqs. (AII.4a,b) for the case that m ≥ 0,
using the monomial representation

R|m|
n (ρ) =

1

2
(n−|m|)
∑

s=0

(

n− s
1
2
(n− |m|)

)( 1
2
(n− |m|)

s

)

ρn−2s (22)

of the radial polynomials. Lukosz writes m∓1 instead of |m∓1| at the right-
hand side of Eq. (11), which makes the result as presented by him somewhat
doubtful in case that m = 0. The recursion

d

dρ
(R|m|

n − R
|m|
n−2) = n(R

|m−1|
n−1 +R

|m+1|
n−2 ) , (23)
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that follows from Eq. (11) by adding the ±-cases, has been presented for
the case m ≥ 0 in 1976 by Noll in [5] as Eq. (13). Noll uses the integral
representation

R|m|
n (ρ) = (−1)

n−m

2

∞
∫

0

Jn+1(t) Jm(ρt) dt , 0 ≤ ρ < 1 , (24)

also see [10], item 10.22.56, of the radial polynomials, together with recursion
formulas for Bessel functions and their derivatives. The two series equations
in Eq. (13) have been presented for the case that m ≥ 0 in 1987 by Braat as
[11], Eqs. (10a,b), using Nijboer’s result [9], Eq. (2, 31) for the +-case and an
argument based on the monomial representation in Eq. (22) for the −-case
(with a somewhat doubtful result for the case m = 0). In Braat’s forthcom-
ing book [12], the two series identities in Eq. (13) are proved by establishing
Eq. (11) via the integral result in Eq. (24), using recursions for Bessel func-
tions, and an induction step to go from Eq. (11) to Eq. (13). The identities
in Eqs. (20–21) have been given in 1999 by Capozzoli as [13], Eqs. (10, 12)
for m ≥ 0 and the versions of the circle polynomials with both the expo-
nential and trigonometric dependence on ϑ (the case m = 0 again being
somewhat doubtful). The series representations in Eqs. (17–18), for nor-
malized circle polynomials with trigonometric azimuthal dependence, have
been given in 2009 by the American National Standards Institute (ANSI) as
[14], Eqs. (B.8–9). A similar thing has been done in 2014 by Stephenson in
[15], Eqs. (30–31). Both ANSI and Stepenson base their derivation on the
recursion in Eq. (23) that they ascribe to Noll.

2.3 Relation with Lukosz polynomials, pupil scaling

and generalized Zernike functions

In this subsection, we present some identities concerning the radial poly-
nomials that follow from the basic identities in Subsec. 2.1 and that connect
these with various other issues in the theory of wave-front description using
the circle polynomials.

The polynomials, see Eq. (11),

Lm
n (ρ) = Rm

n (ρ)− Rm
n−2(ρ) , m = 0, 1, ... , n = m+ 2, m+ 4, ... (25)

are called Lukosz polynomials and are considered in [11], see Eq. (19) in
[11] where Bm

n rather than Lm
n is written, and [12], in connection with the

study of transversal aberrations. The Lukosz polynomials are non-orthogonal
with respect to the standard weight function ρ dρ on [0, 1]. However, they
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are related to the generalized Zernike functions Rm,α
n as considered in [16]

according to

Rm,1
n = −

n−m+ 2

2(n+ 2)
Lm
n+2 , m = 0, 1, ... , n = m,m+ 2, ... (26)

that are orthogonal with respect to the weight function (1 − ρ2)−1 ρ dρ on
[0, 1] according to

1
∫

0

(1− ρ2)−1Rm,1
n1

(ρ)Rm,1
n2

(ρ) ρ dρ =
n−m+ 2

(n +m+ 2)(n+ 2)
δn1n2

, (27)

with n = n1 = n2 at the right-hand side of Eq. (27).
Next, by subtracting the two cases in (11), we get the identity

m

ρ
(R|m|

n −R
|m|
n−2) = n(R

|m−1|
n−1 − R

|m+1|
n−1 ) . (28)

In [17], [18] optical systems with a variable numerical aperture are considered,
and a central role is played by the identity

Rm
n′(ερ) =

∑

n=m(2)n′

(Rn
n′(ε)− Rn+2

n′ (ε))Rm
n (ρ)

=
∑

n=m(2)n′

n+ 1

n′ + 1

1

ε
(Rn+1

n′+1(ε)− Rn+1
n′−1(ε))R

m
n (ρ) (29)

that yields an explicit Zernike expansion of a scaled radial polynomial Rm
n′(ερ)

in terms of the unscaled radial polynomials Rm
n (ρ). The identity between the

two sets of coefficients required in Eq. (29) is a consequence of Eq. (28). In
Eq. (29) we have non-negative integers n′, m with n′ − m even and non-
negative, and the short hand notation i(2)j of Eq. (15) has been used.

2.4 Computational issues

We make a few comments on the computation of radial polynomials and
their derivatives. The direct representation of the radial polynomials, as
given in Eq. (22), can only be used for low values of n. There are, however,
nowadays several good methods for computing (linear combinations of) radial
polynomials of arbitrarily large degree n, see [19], [20], [15]. These methods
are generally recursive in nature. A computation scheme that computes for
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a given ρ ∈ (0, 1) and integer n ≥ 0 all radial polynomials Rm
n (ρ) with

m = n, n− 2, ..., n− 2⌊n/2⌋ = 0 or 1, is based on the integral representation

Rm
n (ρ) =

1

2π

2π
∫

0

Un(ρ cosϑ) cosmϑdϑ , (30)

where Un is the Chebyshev polynomial of the second kind and of degree n,
see [21]. The integrand at the right-hand side of Eq. (30) is a trigonometric
polynomial of degree n+m, and so the integration can be discretized error-
free when N > n+m equidistant sample points in the interval [0, 2π] are used.
This then yields a DCT-based method, with all its well-known advantages in
terms of speed and accuracy, to compute Rm

n (ρ), m = n, n−2, ..., n−2⌊n/2⌋.
In [22], the integral representation in Eq. (30) is used to show the 4-terms

recursion
R|m|

n = ρ [R
|m−1|
n−1 +R

|m+1|
n−1 ]−R

|m|
n−2 , (31)

from which all radial polynomials at a particular value ρ can be computed
using the initialization R0

0 ≡ 1, R
|m|
n ≡ 0, n < |m|. This recursion is rem-

iniscent of the identity in Eq. (28), except that all coefficients in Eq. (31)
are ± 1, which makes Eq. (31) very attractive for implementation. A more
straightforward method than the one used in [22] to show Eq. (31) is to use
the (generalization of the) basic recursions [9], (2, 25–26) in Nijboer’s thesis,

ρR|m|
n (ρ) =

n+m+ 2

2(n+ 1)
R

|m+1|
n+1 +

n−m

2(n+ 1)
R

|m+1|
n−1

=
n−m+ 2

2(n+ 1)
R

|m−1|
n+1 +

n+m

2(n+ 1)
R

|m−1|
n−1 . (32)

It is finally interesting to note that the two Lukosz identities in Eq. (11) follow
from Eq. (30), using some of the more basic properties of the Gegenbauer
polynomials Cα

n , of which Un is the case with α = 1.

3 Zernike-based solution of a basic problem

in wave-front sensing

In this section we consider the problem of estimating the Zernike coefficients
of a wave-front function W (ν, µ) from the Zernike coefficients of the first-
order partial derivatives of W . At this point, we do not want to be more
specific about how the latter coefficients have been obtained (analytically,
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semi-analytically or numerically, experimentally from matching on a set of
sample points on the unit disk, etc.).

We start with the Zernike expansion of W ,

W (ν, µ) =
∞
∑

m=−∞

∑

n=|m|(2)∞

αm
n Z

m
n (ν, µ) , (33)

with
α = (αm

n ) m = −∞, ...,∞,

n = |m|(2)∞

, (34)

an aggregate of unknown Zernike coefficients, and where n = |m|(2)∞ de-
notes n = |m|, |m| + 2, ... . When considering aggregates as in Eq. (34), it
is sometimes convenient to set αm

n = 0 when n < |m|. We assume that the
Zernike coefficients of ∂W

∂ν
and ∂W

∂µ
are available, and we let

β± = ((β±)
m
n ) m = −∞, ...,∞,

n = |m|(2)∞

(35)

be the aggregates of the Zernike coefficients of ∂W
∂ν

± i ∂W
∂µ

, so that

∂W

∂ν
± i

∂W

∂µ
=

∞
∑

m=−∞

∑

n=|m|(2)∞

(β±)
m
n Z

m
n (ν, µ) . (36)

It is shown in Appendix A from Eq.(16) that the analytical aggregates β±

of Zernike coefficients of ∂W
∂ν

± i ∂W
∂µ

are given in terms of the aggregate α of
Zernike coefficients of W by

β± = A±α =
(

2(n+ 1)
∑

n′=n(2)∞

αm∓1
n′+1

)

m = −∞, ...,∞,

n = |m|(2)∞

. (37)

In the matrix-vector notation just developed, we should therefore choose
α such that a best match occurs between β± of Eqs. (35–36) and A±α of
Eq. (37).

In the space ZC of aggregates γ = (γmn )m=−∞,...,∞, n=|m|(2)∞ of Zernike
coefficients, we take as inner product norm

‖γ‖2ZC = (γ,γ)ZC =
∞
∑

m=−∞

∑

n=|m|(2)∞

|γmn |2

2(n+ 1)
. (38)

This inner product is consistent with the normalization condition
∫ ∫

ν2+µ2≤1

|Zm
n (ν, µ)|2 dνdµ =

1

2(n+ 1)
(39)
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of the circle polynomials. Thus, we choose α ∈ ZC such that

‖Aα− β‖2ZC2 = ‖A+α− β+‖
2
ZC + ‖A−α− β−‖

2
ZC (40)

is minimal. Here we have set in a symbolic matrix notation

A =
[A+

A−

]

; Aα =
[A+α

A−α

]

∈ ZC2 , β =
[

β+

β−

]

∈ ZC2 , (41)

and ‖γ‖ZC2 = |γ+‖
2
ZC+‖γ−‖

2
ZC is the inner product norm for a γ = [

γ+

γ−
] ∈

ZC2.
The least-squares α is found by the usual linear algebra methods of gen-

eralized inverses as
α̂ = (AHA)−1AH β , (42)

where AH is the adjoint of the operator A in Eq. (41), relative to the inner
product ( , )ZC2 in ZC2. The operator AH is computed in Appendix A as

AH δ = AH
+ δ+ + AH

− δ− , δ =
[

δ+

δ−

]

∈ ZC2 , (43)

with

AH
± γ =

(

2(n+ 1)
∑

n′=|m|(2)n

γm±1
n′−1

)

m = −∞, ...,∞,

n = |m|(2)∞

, γ ∈ ZC . (44)

The operator AHA is computed in Appendix A as

AHAγ =
(

4(n+1)
∑

n′=|m|(2)∞

Bm
n∧n′ γmn′

)

m = −∞, ...,∞,

n = |m|(2)∞

, γ ∈ ZC , (45)

where
n ∧ n′ = min(n, n′) (46)

and, for n′′ = |m|(2)∞,

Bm
n′′ = |m|+ 1

2
(n′′ − |m|)(n′′ + |m|+ 2) . (47)

Thus α̂ is found by solving

AHAα = AH β . (48)

It follows from Eqs. (43–44) that

(AH β)mn = 2(n+ 1)
∑

n′=|m|(2)n

((β+)
m+1
n′−1 + (β−)

m−1
n′−1) , (49)
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and so, by Eq. (45), we should find the α’s from
∑

n′=|m|(2)∞

Bm
n∧n′ αm

n′ = ψm
n , n = |m|(2)∞ , (50)

where we have set

ψm
n =

∑

n′=|m|(2)n

1
2
((β+)

m+1
n′−1 + (β−)

m−1
n′−1) , (51)

and where the B’s are given by Eqs. (46–47). Note that B0
0 = ψ0

0 , and so
Eq. (50) with m = n = 0 leaves α0

0 undetermined. Also note that Eq. (50)
allows solving amn′ per separate m.

The linear system in Eq. (50) is considered for finite I = 0, 1, ... , and
assumes the particular simple form

I
∑

j=0

Mij xj = ci , i = 0, 1, ..., I , (52)

where M is an (I + 1)× (I + 1) matrix of the form

M = (bmin(i,j))i,j=0,1,...,I . (53)

The right-hand side c = (ci)i=0,1,...,I of Eq. (52) has the form

c = L1 d , (54)

where, see Eqs.(50, 51)

d = (dk)k=0,1,...,I = (ϕm
|m|+2k)k=0,1,...,I , (55)

with
ϕm
n′ = 1

2
(β+)

m+1
n′−1 +

1
2
(β−)

m−1
n′−1 , (56)

and L1 is the (I + 1) × (I + 1) lower triangular matrix with all entries 1
on and below the main diagonal. This L1 is the inverse L−1 of the lower
triangular, bidiagonal matrix L considered in Eq. (B1). Thus the required
solution x = (xj)j=0,1,...,I is given as

x =M−1L1 d = (LM)−1 d . (57)

In Appendix B it is shown that

(LM)−1 =





















a0 −a1 0 0

0 a1 −a2

aI−1 −aI

0 0 aI





















(58)
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(upper triangular, bidiagonal (I+1)×(I+1) matrix with a0, a1, ..., aI on the
main diagonal and −a1,−a2, ...,−aI on the first upper co-diagonal), where

aj =
1

bj − bj−1
, j = 0, 1, ..., I , (59)

with bj from Eq. (53) and where we have set b−1 = 0. Thus we get

xj = ajdj − aj+1dj+1 , j = 0, 1, ..., I − 1 ; xI = aIdI . (60)

In the present case, we have

bj = Bm
|m|+2j = |m|+ 2j(|m|+ j + 1) , j = 0, 1, ..., I , (61)

and so we get

a0 =
1

|m|
; aj =

1

2(|m|+ 2j)
, j = 1, 2, ..., I . (62)

For the case m = 0, we have b0 = B0
0 = 0, and one should delete the first

row and column of the M-matrix in Eq. (53) and solve for x1, x2, ..., xI .
With dj given in Eq. (55) and aj given in Eq. (62), we can then write the

solution of Eq. (60) in terms of the α̂m
n as

α̂m
n = Cm

n ϕm
n − Cm

n+2 ϕ
m
n+2 , n = |m|(2)(|m|+ I − 2) , (63)

α̂m
|m|+2I = Cm

|m|+2I ϕ
m
|m|+2I , (64)

where ϕm
n are given by Eq. (56) and

Cm
|m| =

1

|m|
, n = |m| ; Cm

n =
1

2n
, n = (|m|+ 2)(2)(|m|+ 2I) . (65)

In Eq. (63, we consider n = 2(2)(I − 2) in the case that m = 0.
It is important to note that the finitization to linear systems of order

(I + 1)× (I + 1) has virtually no influence on the computed α̂m
n , except for

the validity range n = |m|(2)(|m|+ 2I − 2).
It is relatively straightforward to check that Eqs.(63, 65) yield αm

n =
δmm1

δnn1
when W = Zm1

n1
and the partial derivative data β± are perfect

(integer n1, m1 with n1 − |m1| even and non-negative, and 0 < n1 ≤ |m1| +
2I − 2).

15



4 Zernike expansion of the Laplacian and the

inverse Laplacian of circle polynomials

Higher-order partial derivatives of wave-front functions occur in various places
in the optics literature on wave-front reconstruction and ophthalmics. In [23],
wave-front reconstruction from defocused images in an astronomical setting
is considered, and for this conservation of the intensity flux requires studying
Jacobians of transformations that involve the second-order partial derivatives
of the aberration. In [8], a detailed study is made of the action of the Lapla-
cian on the linear space ZN+2 spanned by the circle polynomials with degree
not exceeding N+2 as a mapping into ZN in connection with the Transport-
of-Intensity equation. In particular, one is interested in solving the Neumann
problem of finding ϕ ∈ ZN+2 from −∆ϕ = f ∈ ZN with ∂

n
ϕ = ψ on the

boundary of the disk. Such a problem is also considered, with boundary
function ψ = 0, in [24]. Finally, in [14], one is in principle interested in the
partial derivatives of the circle polynomials of all orders in order to study
the effect of decentration of the optical system. Here one aims at obtaining a
Zernike expansion of a displaced wave-front function W (ν + ν0, µ+ µ0) from
such an expansion of W (ν, µ) by Taylor expansion. For the latter problem,
we may refer also to [25], where a completely analytic solution is given for
the problem of expanding any shifted-and-scaled circle polynomial into the
set of circle polynomials orthogonal on the original reference disk (also see
[17] for the pure-scaling case).

In this section, we concentrate on the Laplacians of the circle polynomials,
and we show that for integer n and m such that n − |m| is even and non-
negative

( ∂2

∂ν2
+

∂2

∂µ2

)

Zm
n = 4

1

2
(n−|m|)−1
∑

t=0

(n− 1− 2t)(n− t)(t+ 1)Zm
n−2−2t . (66)

From this formula, many of the observations made in [8] are verified instantly.
Sinilar, but somewhat more complicated, series expressions can be shown to
hold for the three second-order partial derivatives of Zm

n separately.
To show Eq. (66), we observe that

∂2

∂ν2
+

∂2

∂µ2
=

( ∂

∂ν
+ i

∂

∂µ

)( ∂

∂ν
− i

∂

∂µ

)

, (67)

and so, we get from Eq. (16) with summation upper limits 1
2
(n−1−|m±1|)
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that

( ∂2

∂ν2
+

∂2

∂µ2

)

Zm
n = 2

n−1−|m−1|
2

∑

l=0

(n− 2l)
( ∂

∂ν
+ i

∂

∂µ

)

Zm−1
n−1−2l

= 2

n−1−|m−1|
2

∑

l=0

n−1−2l−1−|m−1+1|
2

∑

k=1

2(n− 1− 2l − 2k)Zm−1+1
n−1−2l−1−2k

= 4

n−1−|m−1|
2

∑

l=0

n−2l−2−|m|
2

∑

k=0

(n− 2l)(n− 1− 2l − 2k)Zm
n−2−2l−2k . (68)

We must now carefully rearrange the double series on the last line of Eq. (68).
First, we have that

n− 1− |m− 1|

2
=

{

1
2
(n− |m|) , m ≥ 1 ,

1
2
(n− |m|)− 1 , m ≤ 0 .

(69)

In the case that m ≥ 1 and l = 1
2
(n − |m|), we have that the summation

over k in the last line of Eq. (68) is empty, and so we can delete the term
with l = 1

2
(n− |m|). Hence, in all cases

( ∂2

∂ν2
+

∂2

∂µ2

)

Zm
n = 4

p−1
∑

l=0

p−1−l
∑

k=0

(n− 2l)(n− 1− 2l − 2k)Zm
n−2−2l−2k , (70)

where we have set p = 1
2
(n−|m|). The summation in Eq. (70) can be written

as

4

p−1
∑

t=0

∑

l,k≥0 ; l+k=t

(n− 2l)(n− 1− 2t)Zm
n−2−2t

= 4

p−1
∑

t=0

(n− 1− 2t)Zm
n−2−2t Snt , (71)

where

Snt =
∑

l,k≥0 ; l+k=t

(n− 2l) =

t
∑

l=0

(n− 2l) = (n− t)(t+ 1) , (72)

and we arrive at the result of Eq. (66).
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Table I: Equation (66) for all circle polynomials Zm
n with m ≥ 0, n ≤ 6.

∆Z0
0 = ∆1 = 0 ,

∆Z0
2 = ∆(2(ν2 + µ2)− 1) = 8 = 8Z0

0 ,

∆Z0
4 = ∆(6(ν2 + µ2)2 − 6(ν2 + µ2) + 1) = 96(ν2 + µ2)− 24 =

48Z0
2 + 24Z0

0 ,

∆Z0
6 = ∆(20(ν2 + µ2)3 − 30(ν2 + µ2)2 + 12(ν2 + µ2)− 1) =

720(ν2 + µ2)2 − 480(ν2 + µ2) + 48 = 120Z0
4 + 120Z0

2 + 48Z0
0 ,

∆Z1
1 = ∆(ν + iµ) = 0 ,

∆Z1
3 = ∆ [(3(ν2 + µ2)− 2)(ν + iµ)] = 24(ν + iµ) = 24Z1

1 ,

∆Z1
5 = ∆ [(10(ν2 + µ2)2 − 12(ν2 + µ2) + 3)(ν + iµ)] =

(240(ν2 + µ2)− 96)(ν + iµ) = 80Z1
3 + 64Z1

1 ,

∆Z2
2 = ∆(ν + iµ)2 = 0 ,

∆Z2
4 = ∆ [(4(ν2 + µ2)− 3)(ν + iµ)2] = 48(ν + iµ)2 = 48Z2

2 ,

∆Z2
6 = ∆ [(15(ν2 + µ2)2 − 20(ν2 + µ2) + 6)(ν + iµ)2] =

(480(ν2 + µ2)− 240)(ν + iµ)2 = 120Z2
4 + 120Z2

2 ,

∆Z3
3 = ∆(ν + iµ)3 = 0 ,

∆Z3
5 = ∆ [(5(ν2 + µ2)− 4)(ν + iµ)3] = 80(ν + iµ)3 = 80Z3

3 ,

∆Z4
4 = ∆(ν + iµ)4 = 0 ,

∆Z4
6 = ∆ [(6(ν2 + µ2)− 5)(ν + iµ)4] = 120(ν + iµ)4 = 120Z4

4 ,

∆Z6
6 = ∆(ν + iµ)6 = 0 .

The result of Eq. (66) can be checked in particular cases by writing down the

Zm
n (ρ, ϑ) = R

|m|
n (ρ) exp[imϑ] in Cartesian coordinates and performing the

differentiations implied by ∆ = ∂2

∂ν2
+ ∂2

∂µ2 . For instance, when m = 2, n = 6,
this leads to
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( ∂2

∂ν2
+

∂2

∂µ2

)

Z2
6(ν, µ)

=
( ∂2

∂ν2
+

∂2

∂µ2

)

((15(ν2 + µ2)2 − 20(ν2 + µ2) + 6)(ν + iµ)2)

= (480(ν2 + µ2)− 240)(ν + iµ)2 = 120Z2
4 + 120Z2

2 , (73)

in which the second step requires a lengthy computation. In Table I, we
illustrate Eq. (66) for all circle polynomials Zm

n with m ≥ 0, n ≤ 6.
With the notation introduced in Eq. (15), we can write Eq. (66) concisely

as
∆Zm

n =
∑

s=|m|(2)(n−2)

(s+ 1)(n+ s+ 2)(n− s)Zm
s . (74)

We next consider, as in [8], for a given integer N ≥ 0, the Neumann
problem

−∆ϕ = f , ∂
n
ϕ = ψ , (75)

where f belongs to the linear space ZN spanned by all circle polynomials of
degree ≤ N , and ψ = ψ(ϑ) is a periodic function of degree ≤ N + 2 (and
thus a linear combination of exp[imϑ], integer m, |m| ≤ N + 2).

We let Zm
N and Zm

N+2, for integer m with |m| ≤ N , be the spaces spanned
by the circle polynomials of azimuthal order m and of degree ≤ N and N+2,
respectively. It is seen from Eq. (74) that ∆ maps Zm

N+2 into Zm
N and that

∆Zm
|m| = 0. Furthermore, the matrix Bm of ∆, when choosing in Zm

N and
Zm

N+2 the orthogonal basis of circle polynomials of azimuthal order m and
degree ≤ N and N+2, respectively, is lower triangular. The matrix elements
Bm

ns are given by

Bm
ns =

{

(s+ 1)(n+ s+ 2)(n− s) , s = |m|(2)(n− 2) ,

0 , s = n(2)Nm ,
(76)

where
Nm = |m|+ 2⌊1

2
(N − |m|)⌋ (77)

so that Nm = N or N − 1 according as N and |m| have same or opposite
parity. Observing that Bn,n−2 6= 0, it follows that the functions ∆Zm

n , n =
(|m|+ 2)(2)(Nm + 2) are independent, and so ∆ maps Zm

N+2 onto Zm
N .

For solving −∆ϕ = f , see Eq. (75), we develop f as

f =
N
∑

m=−N

∑

n′=|m|(2)Nm

αm
n′ Zm

n′ . (78)
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Table II: Equation (83) for all circle polynomials Zm
n′

with m ≥ 0 and n′ ≤ 6.

Z0
0 = ∆ [1

8
Z0

2 ]

Z0
2 = ∆ [−1

16
Z0

2 +
1
48
Z0

4 ]

Z0
4 = ∆ [ 1

80
Z0

2 −
1
48
Z0

4 +
1

120
Z0

6 ]

Z0
6 = ∆ [ 1

168
Z0

4 −
1
96
Z0

6 +
1

224
Z0

8 ]

Z1
1 = ∆ [ 1

24
Z1

3 ]

Z1
3 = ∆ [−1

30
Z1

3 +
1
80
Z1

5 ]

Z1
5 = ∆ [ 1

120
Z1

3 −
1
70
Z1

5 +
1

168
Z1

7 ]

Z2
2 = ∆ [ 1

48
Z2

4 ]

Z2
4 = ∆ [−1

48
Z2

4 +
1

120
Z2

6 ]

Z2
6 = ∆ [ 1

168
Z2

4 −
1
96
Z2

6 +
1

224
Z2

8 ]

Z3
3 = ∆ [ 1

80
Z3

5 ]

Z3
5 = ∆ [−1

70
Z3

5 +
1

168
Z3

7 ]

Z4
4 = ∆ [ 1

120
Z4

6 ]

Z4
6 = ∆ [−1

96
Z4

6 +
1

224
Z4

8 ]

Z5
5 = ∆ [ 1

168
Z5

7 ]

Z6
6 = ∆ [ 1

224
Z6

8 ]

It is seen that the basic problem is to solve βm
n for a given m, |m| ≤ N ,

and a given n′ = |m|(2)Nm from the linear equations

∆
(

∑

n=(|m|+2)(2)(Nm+2)

βm
n Zm

n

)

= Zm
n′ . (79)

In terms of the matrix elements Bm
ns in Eq. (76), the Eq. (79) can be written

as
∑

n=s(2)Nm

Bm
n+2,s β

m
n+2 = δsn , s = |m|(s)Nm . (80)
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By the properties of Bm as a triangular matrix, we have

Bm
s+2,s 6= 0 = Bm

n+2,s , n = |m|(2)s , (81)

for s = |m|(2)Nm, and so the βm
n can be solved by backward elimination.

However, as is shown in Appendix B, the linear system in Eq. (80) can be
solved explicitly, with the result

Zm
n′ = ∆

[ 1

4(n′ + 2)(n′ + 1)
Zm

n′+2 −
1

2n′(n′ + 2)
Zm

n′ +
1

4n′(n′ + 1)
Zm

n′−2

]

,

(82)
where we recall that ∆Zm

n = 0 when n ≤ |m|. The result of Eq. (82) is
illustrated in Table II.

Having solved the problem in Eq. (79), and therefore, by linear combi-
nation with f as in Eq. (78), the problem −∆ϕ = f ∈ ZN , it remains to
satisfy the boundary condition ∂

n
ϕ = ψ, see Eq. (75). This problem can

be solved in the same manner as this is done in [8], pp. 1936–37, where a
linear combination of Zm

|m|, m = −N, ..., N , is used to satisfy this boundary
condition. To this end, it is useful to note that

∂
n
[Zm

n (ρ, ϑ)] = (R|m|
n )′(1) exp[imϑ] = 1

2
(n(n+ 2)−m2) exp[imϑ] , (83)

so that ∂
n
[Zm

m (ρ, ϑ)] = |m| exp[imϑ]. Thus, the solution ϕ0 of −∆ϕ0 = f ,
not comprising any Zm

|m|, has computable Fourier coefficients of its normal
derivative ∂

n
ϕ0 = ψ0, and the coefficients cm of Zm

|m| in the full ϕ should be

chosen such that |m| cm equals the mth Fourier coefficient of ψ − ψ0.

5 Conclusions

We have given a review of the results concerning the first-order Cartesian
derivatives of the Zernike circle polynomials. By choosing the version of the
circle polynomials with exponential azimuthal dependence and by proper
combination of the two first-order partial derivatives, the results have been
brought into a concise form. This form allows a convenient formulation
and solution of a basic problem in wave-front sensing in which the Zernike
coefficients of the wave-front function are to be estimated from the Zernike
coefficients of the first-order Cartesian derivatives. It has been shown that
the matrix inversion required for solving the ensuing least-squares problem
can be done analytically. The preferred version of the circle polynomials
together with proper combination of the first-order derivatives also leads to
a concise result for the Laplacians of the circle polynomials. This concise
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result has been used to find an explicit formula for the inverse Laplacian
of any circle polynomial. This yields a concise solution of the Neumann
problem, that occurs when studying the Transport-of-Intensity equation on
spaces of circle polynomials with radial degree not exceeding a fixed number.

Appendix A: Proofs of the properties of A± in

Section 3

In this appendix, we prove the results on the operators A± and A as used in
Section 3. We start with the proof of Eq. (37) that expresses the aggregate of
Zernike expansion coefficients β± of ∂W

∂ν
± i ∂W

∂µ
in terms of the corresponding

aggregate α of W , see Eq. (33). With integer m1, n1, such that n1 − |m1|
is even and non-negative, we shall verify Eq. (37) directly for the case that
W = Zm1

n1
so that αm

n = δm1m δn1n. The identity to be verified is

∂W

∂ν
± i

∂W

∂µ
= 2

∞
∑

m=−∞

∑

n=|m|(2)∞

(n+ 1)
(

∑

n′=n(2)∞

αm∓1
n′+1

)

Zm
n . (A1)

With αm
n = δm1m δn1n, it is seen that in the series over m in Eq. (A1) only the

term m with m∓ 1 = m1 is non-vanishing, and so we should only consider

2
∑

n=|m1±1|(2)∞

(

∑

n′=n(2)∞

(n+ 1)αm1

n′+1

)

Zm1±1
n . (A2)

With n = |m1 ± 1|(2)∞, we have that

∑

n′=n(2)∞

αm1

n′+1 =

{

1 , n + 1 ≤ n1 ,

0 , otherwise .
(A3)

Hence, the expression in Eq. (A2) equals

2
∑

n=|m1±1|(2)(n1−1)

(n+ 1)Zm1±1
n = 2

∑

n=(|m1±1|+1)(2)n1

nZm1±1

= 2

1

2
(n1−1−|m1±1|)

∑

l=0

(n1 − 2l)Zm1±1
n1−1−2l =

( ∂

∂ν
± i

∂

∂µ

)

Zm1

n1
(A4)

according to Eq. (16) with summation of non-zero terms only. This shows
Eq. (37) for the case that W = Zm1

n1
, and the general case follows from this
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by linear superposition of terms Zm1

n1
in W with integer m1 and n1 such that

n1 − |m1| is even and non-negative.
We shall now compute AH and AHA, as required in Eq. (42) for the least

squares α. With γ, δ ∈ ZC2, written as

γ =
[

γ+

γ−

]

, δ =
[

δ+

δ−

]

, (A5)

where γ±, δ± ∈ ZC and with the notation of Eq. (41), we have

(Aγ, δ)ZC2 = (A+γ+, δ+)ZC + (A−γ−, δ−)ZC

= (γ+, A
H
+δ+)ZC + (γ−, A

H
−δ−)ZC = (γ, AHδ)ZC2 , (A6)

where AH
± are the adjoints of A± and

AHδ = AH
+δ+ + AH

−δ− . (A7)

We therefore need to determine AH
± .

As to the +-case, we have for α ∈ ZC by Eq. (37)

A+α =
(

2(n + 1)
∑

n′=n(2)∞

αm−1
n′+1

)

m = −∞, ...,∞,

n = |m|(2)∞

(A8)

Hence, with the definition of the inner product in ZC, see Eq. (38), we have
for α,β ∈ ZC that

(A+α,β)ZC =
∞
∑

m=−∞

∑

n=|m|(2)∞

(A+α)mn (βm
n )∗

2(n + 1)

=

∞
∑

m=−∞

(

∑

n=|m|(2)∞

(

∑

n′=n(2)∞

αm−1
n′+1

)

(βm
n )∗

)

=

∞
∑

m=−∞

(

∑

n′=|m|(2)∞

∑

n=|m|(2)n′

αm−1
n′+1 (β

m
n )∗

)

=
∞
∑

m=−∞

(

∑

n′=(|m+1|+1)(2)∞

∑

n=|m+1|(2)(n′−1)

αm
n′ (βm+1

n )∗
)

.

(A9)

23



Now |m + 1| = m + 1 when m = 0, 1, ... and |m + 1| = |m| − 1 when
m = −1,−2, ... , and so

(A+α,β)ZC =

∞
∑

m=0

(

∑

n′=(m+2)(2)∞

∑

n=(m+1)(2)(n′−1)

αm
n′ (βm+1

n )∗
)

+

−1
∑

m=−∞

(

∑

n′=|m|(2)∞

∑

n=(|m|−1)(2)(n′−1)

αm
n′ (βm+1

n )∗
)

=
∞
∑

m=0

(

∑

n′=(m+2)(2)∞

∑

n=(m+2)(2)n′

αm
n′ (βm+1

n−1 )
∗
)

+
−1
∑

m=−∞

(

∑

n′=|m|(2)∞

∑

n=|m|(2)n′

αm
n′ (βm+1

n−1 )
∗
)

. (A10)

The terms βm+1
n−1 with n = m in the first triple series in the last member of

Eq. (A10) vanish, and so we can extend the n-summation range in this triple
series to m(2)n′. Doing so, and subsequently extending the n′-summation
range to m(2)∞ in this same triple series, we get

(A+α,β)ZC =
∞
∑

m=0

(

∑

n′=m(2)∞

∑

n=m(2)n′

αm
n′ (βm+1

n−1 )
∗
)

+
−1
∑

m=−∞

(

∑

n′=|m|(2)∞

∑

n=|m|(2)n′

αm
n′ (βm+1

n−1 )
∗
)

=

∞
∑

m=−∞

(

∑

n′=|m|(2)∞

∑

n=|m|(2)n′

αm
n′ (βm+1

n−1 )
∗
)

. (A11)

Next, interchanging the summation indices n′ and n in the last line of
Eq. (A11), and throwing in a factor 2(n+ 1)/2(n+ 1), we get

(A+α,β)ZC =
∞
∑

m=−∞

(

∑

n=|m|(2)∞

αm
n (2(n+ 1)

∑

n′=|m|(2)n

βm+1
n+1 )

∗

2(n+ 1)

)

= (α, AH
+β)ZC , (A12)
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where
AH

+β =
(

2(n+ 1)
∑

n′=|m|(2)n

βm+1
n′−1

)

m = −∞, ...,∞,

n = |m|(2)∞

. (A13)

In an entirely similar fashion, we compute

(A−α,β)ZC = (α, AH
−β)ZC , (A14)

where
AH

−β =
(

2(n+ 1)
∑

n′=|m|(2)∞

βm−1
n′−1

)

m = −∞, ...,∞,

n = |m|(2)∞

. (A15)

We finally compute AHA = AH
+A+ + AH

−A. Thus for γ ∈ ZC, we have
from Eq. (44) that

(AH
+A+γ)

m
n = 2(n + 1)

∑

n′=|m|(2)n

(A+γ)
m+1
n′−1 (A16)

when m, n are integer and n = |m|(2)∞. Now for n′ − 1 = |m+ 1|(2)∞, we
have from Eq. (37) that

(A+γ)
m+1
n′−1 = 2(n′+1−1)

∑

n′′=(n′−1)(2)∞

γ
(m+1)−1
n′′+1 = 2n′

∑

n′′=n′(2)∞

γmn′′ . (A17)

Hence

(AH
+A+γ)

m
n = 2(n+ 1)

∑

n
′ = |m|(2)n,

n
′ − 1 ≥ |m+ 1|

2n′
∑

n′′=n′(2)∞

γmn′′ . (A18)

In a similar fashion

(AH
−A−γ)

m
n = 2(n+ 1)

∑

n
′ = |m|(2)n,

n
′ − 1 ≥ |m− 1|

2n′
∑

n′′=n′(2)∞

γmn′′ . (A19)

As to the conditions n′ − 1 ≥ |m + 1|, n′ − 1 ≥ |m − 1| that appear in the
summations in Eqs. (A18–A19), we note that

|m+1| =

{

|m|+ 1 , m ≥ 0

|m| − 1 , m < 0
, |m− 1| =

{

|m| − 1 , m > 0

|m|+ 1 , m ≤ 0 .

(A20)
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Hence, we have n′ = (|m| + 2)(2)n when m ≥ 0 and n′ = |m|(2)n when
m < 0 in Eq. (A18), and n′ = |m|(2)n when m > 0 and n′ = (|m| + 2)(2)n
when m ≤ 0 in Eq. (A19). Therefore,

(AHAγ)mn = (AH
+A+γ)

m
n + (AH

−A−γ)
m
n

= 4(n+ 1)
∑

n′=|m|(2)n

∑

n′′=n′(2)∞

n′ εn′−|m| γ
m
n′′ , (A21)

where εk = 1 when k = 0 and εk = 2 when k = 2, 4, ... (Neumann’s symbol).
The formula in Eq. (A21) is also valid for m = 0, for n′ εn′−|m| γ

m
n′′ vanishes

when n′ = |m| = 0.
We rearrange the result of Eq. (A21) further as

(AHAγ)mn = 4(n+ 1)
∑

n′′=|m|(2)∞

γmn′′

∑

n′=|m|(2)(n′′∧n)

n′ εn′−|m| , (A22)

where k ∧ l is short-hand notation for min(k, l). Finally, for n′′′ = |m|(2)∞,
we have

∑

n′=|m|(2)n′′′

n′ εn′−|m| = |m|+ 1
2
(n′′′ − |m|)(n′′′ + |m|+ 2) , (A23)

and the result of Eq. (45) follows from Eqs. (A22–A23) upon changing n′′

into n′ in γmn′′ and n′ into n′′′ in
∑

n′ in Eq. (A22) and using Eq. (A23) with
n′′′ = n′ ∧ n = n ∧ n′.

Appendix B: Inversion of some special matri-

ces

We shall first show that (LM)−1 is given by Eq. (58), where L is the (I +
1)× (I + 1) lower triangular matrix

L =















1 0 0 0

−1 1 0 0

0 −1 1















(B1)
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(bidiagonal matrix, with 1’s on the main diagonal and −1’s on the first lower
co-diagonal), and

M = (bmin(i,j))i,j=0,1,...,I =

















b0 b0 b0 · · · b0

b0 b1 b1 · · · b1

b0 b1 b2 · · · b2
...

...

b0 b1 b2 · · · bI

















. (B2)

We have

LM =





















b0 b0 b0 b0

0 b1 − b0 b1 − b0 b1 − b0

bI−1 − bI−2 bI−1 − bI−2

0 0 bI − bI−1





















(B3)

(upper triangular matrix with (LM)ij = bi − bi−1, j = i, i + 1, ..., I for
i = 0, 1, ..., I and b−1 defined 0). Next, when U is the (I +1)× (I +1) upper
triangular matrix

U =





















1 c0 0 0

0 1 c1

1 cI−1

0 0 1





















, ci = −
bi − bi−1

bi+1 − bi
, (B4)

(bidiagonal matrix with 1’s on the main diagonal and ci, i = 0, 1, ..., I − 1 ,
on the first upper codiagonal), we have

ULM =















b0 − b−1 0 0

0 b1 − b0

0

0 0 bI − bI−1















= D (B5)

(diagonal matrix with diagonal elements bi − bi−1, i = 0, 1, ..., I). Therefore,
D−1ULM = I, and Eq. (58) follows on computing D−1U from Eqs. (B4, B5).
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We next determine the inverse of the matirx

(Bm
n+2,s)s,n=|m|(2)Nm

(B6)

that occurs in Eq. (80), also see Eq. (76). With

s = |m|+ 2u , n = |m|+ 2k , u, k = 0, 1, ..., K , (B7)

where we have set K = 1
2
(Nm − |m|), the matrix in Eq. (B6) assumes the

form
C = (Cuk)u,k=0,1,...,K , (B8)

where

Cuk =

{

4(|m|+ 2u+ 1)(|m|+ k + u+ 2)(k + 1− u) , k ≥ u ,

0 , k < u ,
(B9)

for integer u, k, with 0 ≤ u, k ≤ K. Thus C = D1E, where D1 is the
(K + 1)× (K + 1) diagonal matrix with diagonal elements 8(|m|+ 2u+ 1),
u = 0, 1, ..., K , and E is the upper triangular matrix with entries

Euk = 1
2
(|m|+ k + u+ 2)(k + 1− u) =

k
∑

j=u

(1
2
|m|+ j + 1) (B10)

for 0 ≤ u ≤ k ≤ K. Setting dj =
1
2
|m|+ j+1 for j = 0, 1, ..., K , and letting

U1, U2 the two bidiagonal upper triangular matrices, given by














1 −1 0 0

0 1 −1

1 −1

0 0 1















,















1 −d0/d1 0 0

0 1 −d1/d2

1 −dK−1/dK

0 0 1















(B11)
respectively, it is seen that

U2(U1E) = U2











d0 d0 d0

0 d1 d1

0 0 dK











=















d0 0 0

0 d1

0

0 0 dK















= D2 . (B12)

Therefore, from E = D−1
1 C and Eq. (B12) we get

C−1 = D−1
2 U2U1D

−1
1 . (B13)
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Finally, we compute U2U1 from Eq. (B11) as the upper triangular matrix
with 1’s on the main diagonal, −1− du/du+1, u = 0, 1, ..., K− 1 , on the first
upper codiagonal, du/du+1, u = 0, 1, ..., K−2 on the second upper codiagonal
and 0 elsewhere. Hence, with the definitions of D1 and D2 as given, we have
that C−1 is an upper triangular tridiagonal matrix whose non-zero entries
are given for k, k′ = 0, 1, ..., K by

(C−1)kk′ =
(U2 U1)kk′

4(|m|+ 2k + 2)(|m|+ 2k′ + 1)

=































1

4(|m|+ 2k + 2)(|m|+ 2k + 1)
, k = k′ ,

−1

2(|m|+ 2k + 2)(|m|+ 2k + 4)
, k = k′ − 1 ,

1

4(|m|+ 2k + 4)(|m|+ 2k + 5)
, k = k′ − 2 .

(B14)

From this the result of Eq. (82) can be obtained by restoring the index
n′ = |m|+ 2k.

Acknowledgement

It is a pleasure to thank Professor J. Braat for his constant interest and
feedback during the development of the results of this paper, in addition to
providing technical assistance of various sorts. Furthermore, a comment of
Professor R. Aarts, yielding an enhancement of the result of Section 3, is
appreciated.

References

[1] H.H. Hopkins, “Canonical pupil coordinates in geometrical and diffrac-
tion image theory”, Japan. J. Appl. Phys. 4, Suppl. 1 (1965).

[2] W. Lukosz, “Der Einfluss der Aberrationen aud die optische
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