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Abstract.
We consider 3D versions of the Zernike polynomials that are commonly used
in 2D in optics and lithography. We generalize the 3D Zernike polynomi-
als to functions that vanish to a prescribed degree α ≥ 0 at the rim of
their supporting ball ρ ≤ 1. The analytic theory of the 3D generalized
Zernike functions is developed, with attention for computational results for
their Fourier transform, Funk and Radon transform, and scaling operations.
The Fourier transform of generalized 3D Zernike functions shows less oscil-
latory behaviour and more rapid decay at infinity, compared to the standard
case α = 0, when the smoothness parameter α is increased beyond 0. The
3D generalized Zernike functions can be used to expand smooth functions,
supported by the unit ball and vanishing at the rim and the origin of the
unit ball, whose radial and angular dependence is separated. Particular in-
stances of the latter functions (prewavelets) yield, via the Funk transform
and the Fourier transform, an anisotropic function that can be used for a
band-limited line-detecting wavelet transform, appropriate for analysis of 3D
medical data containing elongated structures. We present instances of pre-
wavelets, with relevant radial functions, that allow analytic computation of
Funk and Fourier transform. A key step here is to identify the special form
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that is assumed by the expansion coefficients of a separable function on the
unit ball with respect to generalized 3D Zernike functions. A further issue
is how to scale a function on the unit ball while maintaining its supporting
set, and this issue is solved in a particular form.

1 Introduction

1.1 Motivation

In the signal processing of 2D or 3D medical band-limited image data
containing elongated structures, a special form of the wavelet transform is
used. This special wavelet transform is built from an anisotropic wavelet ψ
whose modulus has a contour plot with relatively long ridges in one particular
direction. The Fourier transform F = Fψ of ψ is concentrated near the line
(2D) or the plane (3D) perpendicular to this preferred direction, as long
as contained in the supporting disk (2D) or ball (3D) of F = Fψ that we
assume to be the unit disk or ball. In the case of 2D image processing, one
may choose a function F that factorizes as AB, where A depends on the
angular variable ϕ and B on the radial variable ρ. Here A is even around
π/2 and non-vanishing in a relatively small interval around π/2, and B is
positive and away from 0 on a relatively large or small interval contained in
(0, 1), depending on whether one wants an all-scale or a multi-scale wavelet
transform, where in the latter case variable-scaled versions of B occur. The
inverse Fourier transform ψ = F−1F is then disk-limited (i.e., a function
with Fourier transform supported by the unit disk), and the contour plot
of |ψ| has ridges mainly parallel to the x-axis. In the case of 3D image
processing, one still departs from an F of the factorized form AB, with A
depending on the spherical angular variables ϑ = [0, π] and ϕ ∈ [0, 2π]. This
A(ϑ, ϕ) is often of the form h(ϑ) in which h is a smooth function supported
by a relatively small interval [0, ϑ0] ⊂ [0, π]. Next, A is replaced by its
Funk transform. The Funk transform maps the function A, considered as
a function defined on the unit sphere, onto the function AFunk defined on
the unit sphere whose value AFunk(n) at any unit vector n is given by the
average of A over the great circle perpendicular to n. For the A at hand,
the Funk transform AFunk is rotationally symmetric about the vertical axis
(ϑ = 0) and has as a supporting set the meridional zone |ϑ− π/2| ≤ ϑ0 near
the plane perpendicular to the vertical axis.

In the proposals considered until now [1]–[5], the choice of the radial func-
tion B has been defined in terms of B-splines, with logarithmic dependence
on ρ, or in terms of Gaussians. In the first proposal, the computation of ψ
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as a Fourier transform is analytically not feasible, and one has to resort to
DFT-methods with the usual sampling issues. In the second proposal, one
has a B that has, strictly spoken, an unbounded support. In addition, in
both cases, special measures have to be taken in order that ψ and its scaled
versions can be considered to be disk or ball-limited while having sufficient
decay and a controlled amount of oscillations.

In this report, we propose to use orthogonal functions Z on the unit disk
or ball to expand separable functions F , with the requirements

a. Z decays at the rim of the unit disk or ball,

b. the Fourier transform of Z has an analytic form,

c. angular and radial dependence of Z is separated,

d. the expansion in Z’s is feasible for a set of separable functions F contain-
ing cases relevant in the present context,

e. the scaling issue is resolved.

For the 2D case, a family of orthogonal systems satisfying the requirements
a, b, c has been considered in [6], viz. the generalized Zernike functions Zm,α

n .
For α > −1 and integer n and m such that n− |m| is even and non-negative
Zm,α
n is given by

Zm
n (ν, µ) ≡ Zm

n (ρ, ϕ) = R|m|,αn (ρ) eimϕ , 0 ≤ ρ ≤ 1 , 0 ≤ ρ ≤ 2π , (1)

where we write ν + iµ with ν, µ ∈ R and ν2 + µ2 ≤ 1 as ρ exp(iϕ) with
0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ 2π, and where

R|m|n (ρ) =

{
(1− ρ2)α ρ|m| P (α,|m|)

n−|m|
2

(2ρ2 − 1) , 0 ≤ ρ ≤ 1 ,

0 , ρ > 1 ,
(2)

and P
(α,β)
k (x) is the Jacobi polynomial corresponding to the weight function

(1 − x)α(1 + x)β, −1 ≤ x ≤ 1, of degree k. The functions Zm,α
n have been

considered earlier, in a general setting of unit balls in Rd, in the context of
the Radon transform in [7]. The case that α = 0 yields the standard Zernike
circle polynomials that find wide-spread application in optics, lithography,
acoustics [8]–[10].

For the 3D case, we consider in this report the generalized 3D Zernike
functions. These are defined for α > −1 and non-negative integer n, l such
that n− l is even and non-negative and m = −l,−l + 1, ..., l by

Zm,α
nl (ν, µ, σ) = Rl,α

n (ρ)Y m
l (ϑ, ϕ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ π , 0 ≤ ϕ ≤ 2π ,

(3)
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where we employ spherical coordinates

(ν, µ, σ) = ω = (ρ sinϑ cosϕ, ρ sinϑ sinϕ, ρ cosϑ) . (4)

The radial function Rl,α
n (ρ) in (3) is given by

Rl,α
n (ρ) = ρl(1− ρ2)α P (α,l+1/2)

n−l
2

(2ρ2 − 1) , 0 ≤ ρ ≤ 1 , (5)

and vanishes for ρ > 1, and the angular function Y m
l (ϑ, ϕ) is the spherical

harmonic

Y m
l (ϑ, ϕ) = (−1)m

(2l + 1

4π

(l − |m|!
(l +m)!

)1/2
P
|m|
l (cosϑ) eimϕ , (6)

normalized to have unit L2-norm on the 3D sphere. Note that we use unnor-
malized angular functions exp(imϕ) in the definition of the 2D generalized
Zernike functions in (1) for reasons of consistency with [6]. The case α = 0
in (3) yield the standard Zernike ball polynomials that are considered, with
yet another normalization convention, in [11]–[12].

A great deal of the basic and more advanced properties of the generalized
2D Zernike functions have been developed in [6], but the above issues d and
e have not been addressed there. In the present report, the emphasis is on
developing the theory and results for the 3D case in which all 5 issues a–e
are addressed. In this effort, we shall present the 2D versions of the results,
when not already covered by [6], by appending an additional superscript 2
to Z, R, etc., to distinguish from the 3D case.

Since the radial and angular dependence are separated in the generalized
2D and 3D Zernike functions, the expansion coefficients of a factorized F =
AB factorize to a large extent as well. However, the radial functions in (2)
and (5) contain also the angular index, m and l, respectively, yielding for any
m and l a different expansion of B into radial functions. The set of relevant
angular orders m or l that occur, is determined by smoothness of the angular
factor A. In order to ensure that the coefficients in the B-expansions remain
tractable in size when m or l varies, the degree to which B vanishes at ρ = 0
should be chosen sufficiently high.

In 3D, the Funk transform retains only spherical harmonics Y m
l with even

value of l, and so we only need the expansion of B into radial functions Rl,α
n

with l = 0, 2, ... . Similarly, in the 2D case, the function A is even around
ϕ = π/2 and this implies that only the expansions of B into radial functions

R
|m|,α
n with even m are required.
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1.2 Overview of the results

In Sec. 2 we present the more basic properties of the generalized 3D
Zernike functions. Thus we consider orthogonality and normalization of the
Z’s, we show how separability of an F = AB is reflected by separability of
its expansion coefficients, and we compute the Fourier transforms of the Z’s
using the Funk-Hecke formula. In Sec. 3, we present the required results
concerning scaling 3D generalized Zernike functions. In Sec. 4, we present an
explicit result for the Radon transform of 3D generalized Zernike functions
and an integral representation, in terms of Gegenbauer polynomials, of the
corresponding radial functions that follows from this Radon transform result.
This integral representation can be used to prove a recursion of the Shakibaei-
Paramesran type [13] to compute all radial functions at a particular ρ ∈
[0, 1]. The next few sections are devoted to the study and computation of
the expansion coefficients of various angular order l of a radial function B
occurring as radial factor of a separable F . It is an important fact, to be
proved in Sec. 5, that the coefficients required for l + 2 can be expressed
explicitly and in finite terms in those required for l. Since we may restrict
to even l, it thus follows that all required expansions of B can be obtained
from the one with angular order l = 0. In Sec. 6 we consider radial functions
B(ρ) of the form

B(ρ) = ρβ C(ερ)(1− ρ2)δ , (7)

where β and δ are non-negative integers with β even, ε ∈ [0, 1] is a scaling
parameter, and C(ρ) is a smooth function defined for ρ ∈ [0, 1] and not
necessarily vanishing at ρ = 0 or 1. We describe a procedure how to get from
the expansion of C(ρ) into radial functions R0,0

2k all such expansions for B(ρ)
in (7). The choice

C(ρ) = (1− ρ2)η (8)

in (7) with integer η ≥ 0 is considered in Sec. 7 as a special case of radial
functions that admit explicit expansion into all or particular radial functions
Rl,α
n (ρ). Finally, in Sec. 8 we present an example of a prewavelet radial

function meant for an all-scale wavelet transform, and in Sec. 9 we present
such an example, of the type (7), for a multi-scale wavelet transform. For
these two cases, there are explicit expansions for all required angular orders l.
Hence, when we consider the expansion coefficients of the angular functions
A in spherical harmonics Y m

l as being given, this yields an explicit, analytic
result for the wavelet ψ = FF .
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2 Basic properties of 3D generalized Zernike

functions

We present basic properties of the 3D generalized Zernike functions, de-
fined in (3–6) in terms of Jacobi polynomials and spherical harmonics. Rele-
vant reference for the latter polynomials and special functions are [14], Ch. 18
and §14.30, [15], Ch. 4, and [16], Ch. 5.

2.1 Orthogonality

We have for integer n1, n2, l1, l2,m1,m2 such that n1, n2, l1, l2 ≥ 0, n1− l1
and n2 − l2 even and non-negative, |m1| ≤ l1 and |m2| ≤ l2, and α > −1∫∫∫

ν2+µ2+σ2≤1

Zm1,α
n1l1

(ν, µ, σ)(Zm2,α
n2l2

(ν, µ, σ))∗
dνdµdσ

(1− ρ2)α

=

1∫
0

Rl1,α
n1

(ρ)Rl2,α
n2

(ρ)
ρ2 dρ

(1− ρ2)α ·
π∫

0

2π∫
0

Y m1
l1

(ϑ, ϕ)(Y m2
l2

(ϑ, ϕ))∗

· sinϑ dϑdϕ =

= Nα
nl δn1n2 · δm1m2 δl1l2 , (9)

where δ is Kronecker’s delta. Furthermore, for n1 = n2 = n = l + 2p with
l, p = 0, 1, ... , we have

Nα
nl =

1

2(n+ α + 3/2)

(p+ 1)α
(p+ l + 3/2)α

, (10)

where we employ the generalized Pochhammer symbol

(x)α =
Γ(x+ α)

Γ(x)
. (11)

Similarly, in the 2D case, we have for integer n1,m1, n2,m2 with n1 − |m1|
and n2 − |m2| even and non-negative, and α > −1∫∫
ν2+µ2≤1

2Zm1,α
n1

(ν, µ)(2Zm2,α
n2

(ν, µ))∗
dνdµ

(1− ρ2)α = 2π 2Nα
nm δn1n2 δm1m2 , (12)
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where

2Nα
nm =

1∫
0

|R|m|,αn (ρ)|2 ρ dρ

(1− ρ2)α =
1

2(n+ α + 1)

(p+ 1)α
(p+ |m|+ 1)α

, (13)

with n = |m|+ 2p and p = 0, 1, ... .

2.2 Expansion coefficients of separable functions

For
F (ν, µ, σ) ≡ F (ϑ, ϕ, ρ) = A(ϑ, ϕ)B(ρ) , (14)

with A(ϑ, ϕ) and B(ρ) smooth functions of (ϑ, ϕ) ∈ [0, π] × [0, 2π] and ρ ∈
[0, 1], respectively, we have

F =
∑
n,m,l

cm,αnl Zm,α
nl . (15)

Here, summation is over all integer n,m, l with n, l ≥ 0 and n − l even and
non-negative and |m| ≤ l, and

cm,αnl =
1

Nα
nl

∫∫∫
ν2+µ2+σ2≤1

F (ν, µ, σ)(Zm,α
nl (ν, µ, σ))∗

dνdµdσ

(1− ρ2)α

= aml (A)
1

Nα
nl

bl,αn (B) , (16)

with aml (A) and bl,αn (B) given by

aml (A) =

π∫
0

2π∫
0

A(ϑ, ϕ) (Y m
l (ϑ, ϕ))∗ sinϑ dϑdϕ , (17)

bl,αn (B) =

1∫
0

B(ρ)Rl,α
n (ρ)

ρ2 dρ

(1− ρ2)α . (18)

Thus the c’s factorize as aml (A) (Nα
nl)
−1 bl,αn (B), where a depends only on A

and b depends only on B. The angular index l is present in both factors a
and b. Thus, there are the expansions

A(ϑ, ϕ) =
∞∑
l=0

l∑
m=−l

aml (A)Y m
l (ϑ, ϕ) , (19)
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and, for all l = 0, 1, ... ,

B(ρ) =
∑

n=l,l+2,...

bl,αn
Nα
nl

Rl,α
n (ρ) . (20)

Similarly, we have in the 2D case for F (ν, µ) ≡ F (ϕ, ρ) = A(ϕ)B(ρ) that

F =
∑
n,m

cm,αn
2Zm

n , (21)

with summation over all integer n,m such that n − |m| is even and non-
negative. The c’s are given as

cm,αn = am(A)
1

2Nα
nm

bm,αn (B) , (22)

with

am(A) =
1

2π

2π∫
0

A(ϕ) e−imϕ dϕ , bm,αn (B) =

1∫
0

B(ρ) 2R|m|,αn (ρ)
ρ dρ

(1− ρ2)α .

(23)
There are the expansions

A(ϕ) =
∞∑

m=−∞

am(A) eimϕ , (24)

and, for every integer m,

B(ρ) =
∑

n=|m|,|m|+2,...

bm,α(B)
2Nα

nm

2R|m|,αn (ρ) . (25)

2.3 Funk-Hecke formula for spherical harmonics

Denote the unit ball in R3 by B and the unit sphere in R3 by S. Let f
be integrable over [−1, 1]. Then, see [17], Theorem 1, for ω′ ∈ S and integer
l,m with |m| ≤ l, ∫

ω∈S

f(ω · ω′)Y m
l (ω) dS = 2πλl Y

m
l (ω′) , (26)

where

λl =

1∫
−1

Pl(t) f(t) dt , (27)
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with Pl the Legendre polynomial of degree l. Specifically, taking f(t) = δ0(t)
(the Dirac delta function at 0; to be approximated by smooth functions,
etc.), we get∫

ω∈S

Y m
l (ω) δ0(ω · ω′) dS = 2π Pl(0)Y m

l (ω′) , ω′ ∈ S . (28)

The left-hand side of (28) is the integral of Y m
l over the great circle of radius

1 and center 0 perpendicular to ω′. As to the right-hand side, we have
P2k+1(0) = 0, and

P2k(0) = (−1)k
(1/2)k
k!

(29)

for k = 0, 1, ... .

2.4 Fourier transform of 3D generalized Zernike func-
tions

We have for x ∈ R3

F [Zm,α
nl ](x) =

∫∫∫
ω∈B

e2πiω·x Zm,α
nl (ω) dω

=

1∫
0

∫
η∈S

e2πiρη·xRl,α
n (ρ), Y m

l (η) dη ρ2 dρ . (30)

Write x = rξ with r ≥ 0 and ξ ∈ S, so that

2πiρη · x = isη · ξ , s = 2πρr . (31)

We have by the Funk-Hecke formula∫∫
η∈S

eisη·ξ Y m
l (η) dη = 2π Y m

l (ξ) ·
1∫

−1

eist Pl(t) dt

= 4πil jl(s)Y
m
l (ξ) , (32)

where we have used [14], 18.17.19 on p. 456, with jl the spherical Bessel
function of order l. It follows that

F [Zm,α
nl ](x) = 4πil Y m

l (ξ)

1∫
0

Rl,α
n (ρ) jl(2πrρ) ρ2 dρ . (33)
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For the remaining integral, we show below that for q > 0

1∫
0

Rl,α
n (ρ) jl(qρ) ρ2 dρ = (−1)p 2α(p+ 1)α

jn+α+1(q)

qα+1
, (34)

where the right-hand side of (34) equals 1
2
B(α + 1, 3/2) δn0 at q = 0, with

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
. (35)

Using (34) in (33), using n = l + 2p, we get

F [Zm,α
nl ](x) = 2πin(p+ 1)α

jn+α+1(2π|x|)
(π|x|)α+1

Y m
l

( x

|x|
)
. (36)

We now show (34). We use the power series expansion

ja(z) =

√
π

2z
Ja+1/2(z) = 1

2

√
π (1

2
z)a

∞∑
k=0

(−1
4
z2)k

k! Γ(k + a+ 3/2)
(37)

with a = l, and we get

1∫
0

Rl,α
n (ρ) jl(qρ) ρ2 dρ = 1

2

√
π (1

2
q)l

∞∑
k=0

(−1
4
q2)k

k! Γ(k + l + 3/2)
J l,αnk , (38)

where

J l,αnk =

1∫
0

ρl+2k+2Rl,α
n (ρ) dρ . (39)

We evaluate J in (39) by using the definition of R in (5), the substitution
t = 2ρ2 − 1, Rodriguez’ formula [16], p. 161

(1− t)α (1 + t)β P (α,β)
p (t) =

(−1)p

2p p!

( d
dt

)p
[(1− t)p+α (1 + t)p+β] , (40)

and subsequently p partial integration. Thus
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J l,αnk =

1∫
0

ρ2l+2k+1(1− ρ2)α P (α,l+1/2)
p (2ρ2 − 1) ρ dρ

= 2−l−k−α−5/2
1∫

−1

(1 + t)k (1− t)α (1 + t)l+1/2 P (α,l+1/2)
p (t) dt

=
1

p!
2−p−l−k−α−5/2

1∫
−1

( d
dt

)p
[(1 + t)k] (1− t)p+α (1 + t)p+l+1/2 dt .

(41)

It follows that J in (39) vanishes for k = 0, 1, ..., p− 1 , and that

J l,αnk =
2−p−l−k−α−5/2

p! (k − p)! k!

1∫
−1

(1− t)p+α (1 + t)k+l+1/2 dt (42)

for k = p, p+ 1, ... . For the remaining integral, we use

1∫
−1

(1− t)r−1 (1 + t)s−1 dt = 2r+s−1
Γ(r) Γ(s)

Γ(r + s)
(43)

(Beta-integral), and then

J l,αnk =
1

2

k!

(k − p)! p!
Γ(p+ α + 1) Γ(k + l + 3/2)

Γ(k + l + p+ α + 5/2)
(44)

for k = p, p + 1, ... , and J l,αnk = 0 otherwise. When we insert this into (38),
using the generalized Pochhammer symbol and noting various cancellations,
we get

1∫
0

Rl,α
n (ρ) jl(qp) ρ

2 dρ

= 1
4

√
π (1

2
q)l (p+ 1)α

∞∑
k=p

(−1
4
q2)k

(k − p)! Γ(k + l + p+ α + 5/2)
. (45)

We finally shift the summation index k by p positions, and note that n =
l + 2p, to get

11



1∫
0

Rl,α
n (ρ) jl(qp) ρ

2 dρ

= 1
2

(−1)p (p+ 1)α · 12
√
π (1

2
q)n

∞∑
k=0

(−1
4
q2)k

k! Γ(k + n+ α + 1 + 3/2)

= 2α(−1)p (p+ 1)α
jn+α+1(q)

qα+1
, (46)

where (37) has been used with a = n+ α + 1. This is (34).

2.5 Fourier transform of separable functions

With F = AB as in (14), and expanded as in (15), we have

F [F ](x) =
∞∑
l=0

∑
n=l,l+2,...

l∑
m=−l

cm,αnl F [Zm,α
nl ](x) , (47)

with cm,αnl given in (16–18). For the case that A(ϑ, ϕ) = h(ϑ), with h a smooth
function supported by a small interval [0, ϑ0], we have

aml (A) = δm0

ϑ0∫
0

h(ϑ)Pl(cosϑ) sinϑ dϑ , (48)

and it should, in general, be a relatively light effort to find the latter integrals.
Alternatively, in [18], Sec. 3, a procedure is given, using scaling theory for 2D
Zernike polynomials, for expressing the integrals in (48) in terms of expansion
coefficients of h(2 arcsin[ρ sin(1

2
ϑ0)]) with respect to 2R0,0

2l (ρ), l = 0, 1, ... . By
smoothness of h, only relatively few of the latter coefficients need to be
computed.

When F in (47) is replaced by AFunkB, we just need to replace aml (A) by
2π Pl(0) aml (A), see Subsec. 2.3.

3 Scaling theory for generalized 3D Zernike

functions

We present a result on scaling the radial part of the generalized 3D Zernike
functions. The proof uses the same steps as the one given for the corre-
sponding result in 2D in [6], Sec. 6, and starts from the following integral
representation of Rl,α

n .
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3.1 Integral representation of Rl,α
n

We have for α > −1 and n = l + 2p with l, p = 0, 1, ...

Rl,α
n (ρ) =

2

π
(−1)p 2α(p+ 1)α

∞∫
0

jn+α+1(q) jl(qp)

qα−1
dq , 0 ≤ ρ < 1 . (49)

Proof. By Fourier inversion, see (36), we have for ω ∈ B, ω = ρη with
0 ≤ ρ < 1 and |η| = 1,

Zm,α
nl (ν, µ, σ) = Zm,α

nl (ω)

=

∞∫
0

∫∫
ξ∈S

e−2πiω·rξ 4πin 2α(p+ 1)α
jn+α+1(2πr)

(2πr)α+1
Y m
l (ξ) r2 dr dξ

= 4πin 2α(p+ 1)α

∞∫
0

jn+α+1(2πr)

(2πr)α+1

 ∫
ξ∈S

e−2πirω·ξ Y m
l (ξ) dξ

 r2 dr

= 4πin 2α(p+ 1)α

∞∫
0

jn+α+1(2πr)

(2πr)α+1
4πil Y m

l (η) jl(−2πρr) r2 dr , (50)

where (32) has been used. Substituting q = 2πr, using jl(−z) = (−1)l jl(z)
and n = l + 2p, we then get

Zm,α
l (ρη) =

2

π
(−1)p 2α(p+ 1)α Y

m
l (η)

∞∫
0

jn+α+1(q) jl(qp)

qα−1
dq , (51)

and this is the required result.

3.2 Scaling the radial part

We have for α > −1, n = l + 2p with l, p = 0, 1, ... and 0 ≤ ε ≤ 1

Rl,α
n (ερ) =

∑
n′=l,l+2,...

C l,α
nn′(ε)R

l,0
n′ (ρ) , 0 ≤ ρ < 1 , (52)
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where

C l,α
nn′ =

2

π
(−1)

n+n′−2l
2 2α(p+ 1)α

 ∞∫
0

jn+α+1(q) jn′(qε)

qα−1
dq

+

∞∫
0

jn+α+1(q) jn′+2(qε)

qα−1
dq

 . (53)

In the case that α = 0, we have

C l,0
nn′(ε) =

{
Rn′,0
n (ε)−Rn′+2,0

n (ε) , n′ = l, l + 2, ..., n

0 , n′ = n+ 2, n+ 4, ... ,
(54)

where we set Rn+2,0
n = 0 for the first option in (54) with n′ = n.

Proof. We have by completeness and orthogonality

C l,α
nn′(ε) = (2n′ + 3)

1∫
0

Rl,α
n (ερ)Rl,0

n′ (ρ) ρ2 dρ . (55)

We use the results (34) and (49) to write

1∫
0

Rl,α
n (ερ)Rl,0

n′ (ρ) ρ2 dρ

=
2

π
(−1)p 2α(p+ 1)α

1∫
0

 ∞∫
0

jn+α+1(q) jl(qερ)

qα−1
dq

 Rl,0
n′ (ρ) ρ2 dρ

=
2

π
(−1)p 2α(p+ 1)α

∞∫
0

jn+α+1(q)

qα−1

 1∫
0

Rl,0
n (ρ) jl(qερ) ρ2 dρ

 dq

=
2

π
(−1)p+

1
2
(n′−l) 2α(p+ 1)α

∞∫
0

jn+α+1(q)

qα−1
jn′+1(qε)

qε
dq . (56)

Next, we use p = 1
2
(n− l) and

jn′+1(z)

z
=

1

2n′ + 3
(jn′(z) + jn′+2(z)) , (57)

14



and this gives (53).
The remaining integrals in (53) are of the form

∞∫
0

jn+α+1(q) jn′′(qε)

qα−1
dq , n′′ = n′ or n′ + 2 = l, l + 2, ... , (58)

and can be evaluated in terms of 2F1 using the general discontinuous Weber-
Schafheitlin integral [14], p. 244. For the case that α = 0, 1, ... , the identity in
(52) is a relation between a polynomial comprising the powers ρl, ρl+2, ..., ρn+2α

at the left-hand side and orthogonal polynomials Rl,0
n′ at the right-hand side.

Therefore, C l,α
nn′(ε) = 0 for n′ > n+ 2α. In the case that α = 0, the integrals

in (58) can all be expressed, see (49), as

∞∫
0

jn+1(q) jn′′(qε) q dq =
π

2
(−1)

n′′−n
2 Rn′′

n (ε) , (59)

except the one with n′′ = n+ 2. The results (49), (59) can also be obtained
using the Weber-Schafheidlin integral result: there holds

∞∫
0

jn+α+1(q) jn′′(qε)

qα−1
dq

=
π

2

Γ(1
2
(n+ n′′ + 3)) εn

′′

2α Γ(n′′ + 3/2) Γ(1
2
(n− n′′) + α + 1)

· 2F1(−1
2
(n− n′′ − α), 1

2
(n+ n′′ + 3);n′′ + 3/2; ε2) . (60)

This vanishes for the case that α = 0, 1, ... when n′′ = n+2α+2, n+2α+4, ...
due to the Γ(1

2
(n − n′′) + α + 1) in the denominator. Therefore, (59) also

holds for n′′ = n + 2, when we interpret the right-hand side as 0. This then
yields (54) upon carefully keeping track of the various (−1)j.

4 Radon transform and recursions for com-

puting the radial parts of generalized 3D

Zernike functions

We present a closed-form expression for the Radon transform
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(RZ)(τ,ηR) =

∫
ω∈B

Z(ω) δ(τ − ω · ηR) dω , (61)

with τ ∈ R and ηR ∈ S, of any generalized 3D Zernike function Z = Zm,α
nl .

This result is due to A.K. Louis, Theorem 3.1, case N = 3, in [7], and can be
proved using the projection theorem for Radon transforms, the Funk-Hecke
theorem, the explicit form of the Fourier transform of generalized 3D Zernike
functions, and an integral result for the Fourier transform of the right-hand
side of (34). See also the proof for the 2D case in [6], Sec. 5. This is then used
to derive an integral representation of the radial part of any generalized 3D
Zernike function, which can be employed to find a recursion of the Shakibaei-
Paramesran type [13] for computing all Rl,α

n (ρ), l, n = 0, 1, ... and n− l even
and non-negative, at a particular ρ ∈ [0, 1] from Rl,α

n (ρ) with l = n = 0.

4.1 Radon transform of generalized 3D Zernike func-
tions

We have for integer n, l,m with n− l even and non-negative and n, l ≥ 0,
and m = −l,−l + 1, ..., l , all α > −1 and all τ ∈ R, ηR ∈ S

(RZm,α
nl )(τ,ηR) =

1

c
(1− τ 2)α+1Cα+3/2

n (τ)Y m
l (ηR) , (62)

where C
α+3/2
n is the Gegenbauer polynomial, [14]–[16], of degree n corre-

sponding to the weight (1− τ 2)α+1, |τ | ≤ 1, and

c =
2−2(1+α)√
π (p+ 1)α

Γ(n+ 2α + 3)

Γ(n+ 1) Γ(α + 3/2)
. (63)

This follows from [7], Theorem 3.1 (choice N = 3, ν = α + 3/2, wν(s) =
(1− s2)α+1 in terms of the parameters and weights in [7]).

4.2 Integral representation of Rl,α
n

We have for any integer n, l ≥ 0 such that n− l is even and non-negative,
any α > −1, and 0 ≤ ρ ≤ 1

Rl,α
n (ρ) =

1

2

(3/2)p+l
(α + 3/2)p+l

(1− ρ2)α
1∫

−1

Cα+3/2
n (ρt)Pl(t) dt . (64)
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Proof. We develop the function

ω = (ν, µ, σ) ∈ B 7→ (1− ρ2)αCα+3/2
n (σ) (65)

into a Zα-series, so that

(1− ρ2)αCα+3/2
n (σ) =

∑
n′,l,m

βmn′l Z
m,α
n′l (ν, µ, σ) , (66)

with

βmn′l =
1

Nα
n′l

∫∫∫
ν2+µ2+σ2≤1

Cα+3/2
n (σ)(Zm,α

n′l (ν, µ, σ))∗ dνdµdσ

=
1

Nα
n′l

1∫
−1

Cα+3/2
n (σ)

 ∫∫
ν2+µ2≤1−σ2

Zm
n′l(ν, µ, σ) dνdµ


∗

dσ . (67)

To evaluate the double integral in the last member of (67), we use (62) with
ηR = (0, 0, 1) and τ = σ, so that∫∫
ν2+µ2≤1−σ2

Zm,α
n′l (ν, µ, σ) dνdµ =

∫
ω∈B

Zm,α
n′l (ω) δ0(τ − ω · ηR) dω

=
1

c
(1− σ2)α+1C

α+3/2
n′ (σ)Y m

l ((0, 0, 1)) .

(68)

Now ω = (0, 0, 1) when ϑ = 0, ϕ arbitrary, ρ = 1 in (4), and so

Y m
l ((0, 0, 1)) =

(2l + 1

4π

)1/2
P 0
l (1) δm0 =

(2l + 1

4π

)1/2
δ0m (69)

by (6). Hence∫∫
ν2+µ2≤1−σ2

Zm,α
n′l (ν, µ, σ) dνdµ =

1

c
(1− σ2)α+1C

α+3/2
n′ (σ)

(2l + 1

4π

)1/2
δm0 .

(70)
This yields, by orthogonality of the Cα+3/2,

βmn′l =
δm0

cNα
n′l

(2l + 1

4π

)1/2 1∫
−1

Cα+3/2
n (σ)C

α+3/2
n′ (σ)(1− σ2)α+1 dσ

=
δm0 δnn′

cNα
nl

(2l + 1

4π

)1/2
Mα

n , (71)

17



where

Mα
n =

1∫
−1

(1− σ2)α+1 |Cα+3/2
n (σ)|2 dσ =

π 2−2α−2 Γ(n+ 2α + 3)

n! (n+ α + 3/2) Γ2(α + 3/2)
(72)

by [16], (7.8) on p. 279 with λ = α + 3/2. Remembering the definitions of
Nα
nl in (13) and of c in (63), we get

βmn′l = π(2l + 1)1/2
(p+ l + 3/2)α

Γ(α + 3/2)
δm0 δnn′ . (73)

It follows, see (3–6), with σ = ρ cosϑ,

(1− ρ2)αCα+3/2
n (ρ cosϑ)

=
π

Γ(α + 3/2)

∑
l

(2l + 1)1/2 (p+ l + 3/2)α Z
0,α
nl (ν, µ, σ)

=

√
π

2Γ(α + 3/2)

∑
l

(2l + 1)(p+ l + 3/2)αR
l,α
n (ρ)Pl(cosϑ) . (74)

From
π∫

0

Pl1(cosϑ)Pl2(cosϑ) sinϑ dϑ =
δl1l2

l1,2 + 1/2
, (75)

we then get for l = n, n− 2, ..., n− 2bn/2c
π∫

0

(1− ρ2)αCα+3/2
n (ρ cosϑ)Pl(cosϑ) sinϑ dϑ

=

√
π

Γ(α + 3/2)
(p+ l + 3/2)αR

l,α
n (ρ) . (76)

Finally, using
1√
π

Γ(α + 3/2)

(p+ l + 3/2)α
=

1

2

(3/2)p+l
(α + 3/2)p+l

, (77)

and substituting t = cosϑ ∈ [−1, 1] in the integral in (76), we get (64).

Note. In [6], Theorem 5.2, the 2D version of this result has been given,

and this leads to an expression for 2R
|m|,α
n (ρ) in terms of the Fourier coeffi-

cients of Cα+1
n (ρ cosϑ). By discretization ϑ = 2πk

N
with N sufficiently large,
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this yields a DFT-scheme for computing all R
|m|
n (ρ), integer m such that

n− |m| is even and non-negative, for a fixed n = 0, 1, ... and ρ ∈ [0, 1]. Such
a thing is more awkward in the 3D because of the occurrence of a Legendre
polynomial, rather than a Chebyshev polynomial in (64).

4.3 Recursion for Rl,α
n (ρ)

We let

Iαnl = Iαnl(ρ) = 1
2

1∫
−1

Cα+3/2
n (ρt)Pl(t) dt , (78)

so that

ρl P (α,l+1/2)
p (2ρ2 − 1) = (1− ρ2)−αRl,α

n (ρ) =
(3/2)p+l

(α + 3/2)p+l
Iαnl(ρ) . (79)

Then for integer n, l ≥ 0 with n+ 1− l even and non-negative,

Iαn+1,l =
n+ α + 3/2

n+ 1
ρ
[ l + 1

l + 1/2
Iαn,l+1 +

l

l + 1/2
Iαn,l−1

]
− n+ 2α + 2

n+ 1
Iαn−1,l .

(80)
With the initialization Iα00(ρ) = 1, Iαnl ≡ 0 when n < l, all Iαnl(ρ) can be
computed for a fixed ρ ∈ [0, 1] according to the scheme pictured in Fig. 1,
where the large-size numbers 0, 1, 2, ... indicate the order of computation. A
similar recursion exists in the 2D case. Setting

Jαnm = Jαnm(ρ) =
(α + 1)p+m

(1)p+m
(1− ρ2)−α 2Rm,α

n (ρ) (81)

for integer n,m ≥ 0 such that n−m is even and non-negative, the following
holds. Let n, m be non-negative integers such that n + 1 − m is even and
non-negative, and let ρ ∈ [0, 1]. Then

Jαn+1,m =
n+ α + 1

n+ 1
[Jαn,|m−1| + Jαn,m+1]−

n+ 2α + 1

n+ 1
Jαn−1,m , (82)

where we initialize with Jα00(ρ) = 1, Jαnm ≡ 0 when n < m. This generalizes
the recursive scheme

2R|m|n (ρ) = ρ [2R
|m−1|
n−1 (ρ) + 2R

|m+1|
n−1 (ρ)]− 2R

|m|
n−2(ρ) , (83)

valid for the radial parts of the standard 2D Zernike circle polynomials [13].
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Figure 1: Order of computation (large-size numbers) of all Iαnl(ρ), starting
from Iα00(ρ) = 1 and Iαnl(ρ) = 0 for n < l, for a fixed ρ ∈ [0, 1] using the
recursion (80).

To show (80), we use the recursions [16], (7.7) on p. 279 and (10.2) on
p. 190,

(n+ 1)Cλ
n+1(t) = 2(n+ λ) t Cλ

n(t)− (n+ 2λ− 1)Cλ
n−1(t) , (84)

(2n+ 1) t Pn(t) = (n+ 1)Pn+1(t) + nPn−1(t) , (85)

valid for n = 0, 1, ... , where we set Cλ
−1(t) = 0 = P−1(t). Thus from (78),

with n+ 1 instead of n and λ = α + 3/2,

Iαn+1,l

= 1
2

1∫
−1

C
α+3/2
n+1 (ρt)Pl(t) dt

= 1
2

1∫
−1

(2(n+ α + 3/2)

n+ 1
ρtCα+3/2

n (ρt)− n+ 2α + 2

n+ 1
C
α+3/2
n−1 (ρt)

)
Pl(t) dt

=
n+ α + 3/2

n+ 1
ρ

1∫
−1

Cα+3/2
n (ρt) t Pl(t) dt−

n+ 2α + 2

n+ 1
Iαn−1,l

=
n+ α + 3/2

n+ 1
ρ

1∫
−1

Cα+3/2
n (ρt)

( l + 1

2l + 1
Pl+1(t) +

l

2l + 1
Pl−1(t)

)
dt
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− n+ 2α + 2

n+ 1
Iαn−1,l , (86)

and this yields the right-hand side of (80) via (78) with l − 1 instead of l.

5 Recursion for the radial part of expansion

coefficients of separable functions on the

unit ball

We present a recursion relation between the radial part coefficients b(B)
of a separable function F = AB on the unit ball, see Subsec. 2.2. We recall
that for integer n, l ≥ 0 such that n− l is even and non-negative

bl,αn (B) =

1∫
0

B(ρ)Rl,α
n (ρ)

ρ2 dρ

(1− ρ2)α . (87)

We shall explicitly find the connection coefficients C in the formula

Rl+2,α
l+2+2p =

p+1∑
s=0

C l+2→l,α
ps Rl,α

l+2s , (88)

where l, p = 0, 1, ... . As a consequence, we have

bl+2,α
l+2+2p(B) =

p+1∑
s=0

C l+2→l,α
ps bl,αl+2s(B) . (89)

Hence, from b0,αn (B) and b1,αn (B), all required b-coefficients can be computed
recursively using (89).

To find the C’s in (88), we use the definition of R in (5) and set t = 2ρ2−1,
so that (68) becomes

1
2

(1 + t)P (α,l+5/2)
p (t) =

p+1∑
s=0

C l+2→l,α
ps P (α,l+1/2)

s (t) . (90)

We have, see [16], 2nd item in (4.16) on p. 166,

1
2

(1 + t)(2n+α+β+ 2)P (α,β+1)
n (t) = (n+β+ 1)P (α,β)

n (t) + (n+ 1)P
(α,β)
n+1 (t) ,

(91)
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and when this is used with p = n, α = α, β = l + 1/2, we get

1
2

(1 + t)P (α,l+5/2)
p (t)

=
p+ l + 5/2

2p+ α + l + 7/2
P (α,l+3/2)
p (t) +

p+ 1

2p+ α + l + 7/2
P

(α,l+3/2)
p+1 (t) . (92)

Next, we have, see [19], (7.32),

P (α,δ)
n =

(α + 1)n
(α + β + 2)n

·
n∑
k=0

(−1)n−k(δ − β)n−k(α + β + 1)k(α + β + 2)2k(n+ α + δ + 1)k
(1)n−k(α + 1)k(α + β + 1)2k(n+ α + β + 2)k

P
(α,β)
k ,

(93)

and when we use this with n = p, p+1, α = α, β = l+1/2, δ = β+1 = l+3/2,
we get

P (α,l+3/2)
n

=
(α + 1)n

(α + l + 5/2)n

n∑
k=0

(−1)n−k
(α + l + 3/2)k(α + l + 5/2)2k

(α + 1)k(α + l + 3/2)2k
P

(α,l+1/2)
k .

(94)

From (92) and (94), we compute then

C l+2→l,α
ps

=
( p+ l + 5/2

2p+ α + l + 7/2

(α + 1)p
(α + l + 5/2)p

− p+ 1

2p+ α + l + 7/2

(α + 1)p+1

(α + l + 5/2)p+1

)

· (−1)p−s
(α + l + 3/2)s(α + l + 5/2)2s

(α + 1)s(α + l + 3/2)2s
, s = 0, 1, ..., p , (95)

and, for s = p+ 1, we get

C l+2→l,α
p,p+1

=
p+ 1

2p+ α + l + 7/2

(α + 1)p+1

(α + l + 5/2)p+1

(α + l + 3/2)p+1(α + l + 5/2)2p+2

(α + 1)p+1(α + l + 3/2)2p+2

.

(96)
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For s = 0, 1, ..., p , we further compute the factor on the first line of (95) as

(α + 1)p
(2p+ α + l + 7/2)(α + l + 5/2)p+1

· [(p+ l + 5/2)(p+ l + 5/2 + α)− (p+ 1)(p+ 1 + α)]

=
(α + 1)p

(α + l + 5/2)p+1

(l + 3/2) . (97)

Hence, for s = 0, 1, ..., p

C l+2→l,α
ps = (−1)p−s(l + 3/2)

(α + 1)p(α + l + 3/2)s(α + l + 5/2)2s
(α + l + 5/2)p+1(α + 1)s(α + l + 3/2)2s

, (98)

and (96) for s = p+ 1 simplifies to

C l+2→l,α
p,p+1 =

p+ 1

α + l + p+ 5/2
. (99)

Also, see (103) below for simplification of the ratio of the two Pochhammer
symbols of order 2s in (98).

The corresponding result for the 2D case to write 2Rl+2,α
l+2+2p as a linear

combination of 2Rl,α
l+2s reads

2Rl+2,α
l+2+2p =

p+1∑
s=0

2C l+2→l,α
ps

2Rl,α
l+2s , (100)

with

2C l+2→l,α
ps = (−1)p−s(l + 1)

(α + 1)p(α + l + 1)s
(α + l + 2)p+1(α + 1)s

α + l + 2s+ 1

α + l + 1
(101)

for s = 0, 1, ..., p and

2C l+2→l,α
p,p+1 =

p+ 1

α + l + p+ 2
. (102)

For the case that α = 0, this result was already established in 1942 by
Nijboer, see [20], (2.24) and [21], (200).

The expression (98) for C contains Pochhammer symbols of potentially
high order that can, therefore, become very large. The quantities C them-
selves are of the order of unity. They can be computed more reliably as
follows. We first write (98) as

C l+2→l,α
ps = (−1)p−s

(l + 3/2)(α + l + 2s+ 3/2)

α + l + 3/2
Kps , (103)
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where for a fixed p = 0, 1, ...

Kps =
(α + 1)p

(α + l + 5/2)p+1

(α + l + 3/2)s
(α + 1)s

, s = 0, 1, ..., p . (104)

The quantity in (103) in front of Kps is innocent. As to Kps itself, we observe
that

Kpp =
α + l + 3/2

(α + l + p+ 3/2)(α + l + p+ 5/2)
, (105)

and

Kp,s−1 =
α + s

α + l + s+ 1/2
Kps , s = p, p− 1, ..., 1 . (106)

6 Development of scaled-and-truncated radial

profiles

We present a procedure to find for a given even integer β ≥ 0 and a
δ > −1 the expansion of

B(ρ; ε) = ρβ C(ερ)(1− ρ2)δ , 0 ≤ ρ ≤ 1 , (107)

into a series comprising the radial functions R0,δ
2k , k = 0, 1, ... . Here C(ρ),

0 ≤ ρ ≤ 1, is an integrable function of which we assume that there is available
the expansion

C(ρ) =
∞∑
l=0

clR
0,0
2l (ρ) , 0 ≤ ρ ≤ 1 , (108)

with R0,0
2l the standard 3D Zernike polynomials, and ε is a scaling parameter

with 0 ≤ ε ≤ 1. From the expansion of B(ρ; ε) as an R0,δ
2k -series, we can

obtain, by the procedure of Sec. 5, all expansions of B(ρ; ε) as an Rl,δ
2k-series

with l = 2, 4, ... .
From the scaling result proved in Sec. 3, we have

R0,0
2l (ερ) =

l∑
k=0

(R2k,0
2l (ε)−R2k+2,0

2l (ε))R0,0
2k (ρ) , (109)
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and so we find

C(ερ) =
∞∑
l=0

clR
0,0
2l (ερ)

=
∞∑
l=0

cl

l∑
k=0

(R2k,0
2l (ε)−R2k+2,0

2l (ε))R0,0
2k (ρ)

=
∞∑
k=0

ck(ε)R
0,0
2k (ρ) , (110)

where

ck(ε) =
∞∑
l=k

(R2k,0
2l (ε)−R2k+2,0

2l (ε)) cl . (111)

Compare [22], [23]. In particular, we have ck(1) = ck since R2j,0
2i (1) = 1 or

0 according as i ≥ j or i < j. Also, ck(0) = δk0 c0 since R0,0
2k (0) = δk0.

Furthermore, when cl = 0 for l ≥ L, we have ck(ε) = 0 for k ≥ L.
The required expansion of B(ρ; ε) in (107) can now be obtained from the

expansion of C(ερ) in (110) by expanding systematically

ρβ R0,0
2k (ρ)(1− ρ2)δ =

∑
i

Dβδ
ki R

0,δ
2i (ρ) , (112)

where we recall that β = 2r is even. We achieve this using two steps, viz. by
expanding

ρ2r R0,0
2k (ρ) =

∑
j

Er
kj R

0,0
2j (ρ) , (113)

R0,0
2j (ρ)(1− ρ2)δ =

∑
i

F δ
jiR

0,δ
2i (ρ) , (114)

respectively.

6.1 Computation of the expansion coefficients in (113)

We have by orthogonality and (13), case α = 0,

Er
kj = 2(2j + 3/2)

1∫
0

ρ2r R0,0
2k (ρ)R0,0

2j (ρ) ρ2 dρ . (115)
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We next expand ρr R0,0
2k (ρ) and ρr R0,0

2j (ρ) into a Rr,0
r+2l-series according to

ρr R0,0
2i (ρ) =

∑
l

Cr
ilR

r,0
r+2l(ρ) , i = k, j . (116)

Then by orthogonality and (10), case α = 0, we get

Er
kj =

∑
l

2j + 3/2

r + 2l + 3/2
Cr
kl C

r
jl . (117)

The Cr
il can be evaluated explicitly as

Cr
il =

r + 2l + 3/2

i+ r + l + 3/2

( r

i− l
)( i+ l + 1/2

l

)
/
( i+ r + l + 1/2

i

)
(118)

when l = 0, 1, ..., i and i − l ≤ r, and 0 otherwise. Thus, the summation
range in (117) consists of all integer l such that

max {0, k − r, j − r} ≤ l ≤ min {k, j} . (119)

This summation range is empty, and so Cr
kl = 0, if and only if |k − j| > r.

To show (118), we can use [19], (7.32), compare (93), with α = 0, δ = 1/2,
β = r + 1/2, since (116) is the same as

P
(0,1/2)
i =

∑
l

Cr
il P

(0,r+1/2)
l . (120)

In terms of Pochhammer symbols, we have

Cr
il =

( r

i− l
) r + 2l + 3/2

r + 3/2

i! (r + 3/2)l(i+ 3/2)l
l! (r + 5/2)i(i+ r + 5/2)l

, (121)

and this can be case into the binomial form (118).
It does not seem possible to find the Er

kj in (113) in closed form. This
problem also occurs in the 2D case. In the 2D case, one expands

ρ2r 2R0,0
2k (ρ) =

∑
j

2Er
kj

2R0,0
2j (ρ) (122)

with
2Er

kj =
∑
l

2j + 1

r + 2l + 1
2Cr

kl
2Cr

jl , (123)

and, for i = k, j with l = 0, 1, ..., i and i− l ≤ r,

2Cr
il =

r + 2l + 1

i+ r + l + 1

( r

i− l
)( i+ l

l

)
/
( r + i+ l

i

)
. (124)
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6.2 Computation of the expansion coefficients in (114)

We have that (114) is the same as

P
(0,1/2)
j =

∑
i

F δ
ji P

(δ,1/2)
i . (125)

We now use [19], 7.33,

P (γ,β)
n =

(β + 1)n
(α + β + 2)n

·
n∑
k=0

(γ − α)n−k(α + β + 1)k(α + β + 2)2k(n+ γ + β + 1)k
(1)n−k(β + 1)k(α + β + 1)2k(n+ α + β + 2)k

P
(α,β)
k

(126)

with γ = 0, β = 1/2, n = j, α = δ, k = i. We then find

F δ
ji = (−1)j−i

( δ

j − i
) δ + 2i+ 3/2

δ + 3/2

(3/2)j
(δ + 5/2)j

(δ + 3/2)i(j + 3/2)i
(3/2)i(j + δ + 5/2)i

= (−1)j−i
δ + 2i+ 3/2

δ + i+ j + 3/2

( δ

j − i
)( i+ j + 1/2

j

)
/
( δ + i+ j + 1/2

j

)
.

(127)

Observe that the summation range in (125) is all integer i ≥ 0 such that
j − δ ≤ i ≤ j.

In the corresponding problem of expanding

2R0,0
2j (ρ)(1− ρ2)δ =

∑
i

2F δ
ji

2R0,δ
2i (ρ) , (128)

the required coefficients F are given by

2F δ
ji = (−1)j−i

δ + 2i+ 1

δ + i+ j + 1

( δ

j − i
)( i+ j

j

)
/
( δ + i+ j

j

)
. (129)

7 Expansion of some special radial profiles

We present expansion into radial Zernike functions of some special radial
profiles as required in Secs. 8 and 9 for the analytic construction of all-scale
and multi-scale wavelet transforms.
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7.1 Expansion of ρβ(1− ρ2)α as an Rl,α
n -series

We have, see (20),

B(ρ) = ρβ(1− ρ2)α =
∑

n=l,l+2,...

bl,αn
Nα
nl

Rl,α
n (ρ) , (130)

where Nα
nl is given in (10) and

bl,αn =

1∫
0

ρβ(1− ρ2)αRl,α
n (ρ)

ρ2 dρ

(1− ρ2)α

=

1∫
0

ρl+β+1(1− ρ2)α P (α,l+1/2)
p (2ρ2 − 1) ρ dρ (131)

with n = l+2p and l, p = 0, 1, ... . This is the same integral as in (41), except
that the power 2l+ 2k+ 1 of ρ is replaced by l+ β + 1. Thus replacing k by
1
2

(β − l) in (44), we get

bl,αn =
1

2

Γ(1
2

(β − l) + 1)

p! Γ(1
2

(β − l)− p+ 1)

Γ(p+ α + 1) Γ(1
2

(β + l) + 3/2)

Γ(1
2

(β + l) + p+ α + 5/2)

=
1

2α + β + l + 2p+ 3

( β − l
2
p

)
/
( α + p+

β + l + 1

2
α + p

)
, (132)

where we use the binomial notation( a
p

)
=
a(a− 1) · ... · (a− p+ 1)

p!
, any a ∈ R , p = 0, 1, ... . (133)

For the 2D case, there is the expansion

ρβ(1− ρ2)α =
∑

n=l,l+2,...

2bl,αn
2Nα

nl

2Rl,α
n (ρ) , (134)
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with 2Nα
nl given by (13) and

2bl,αn =

1∫
0

ρl+β(1− ρ2)α P (α,l)
p (2ρ2 − 1) ρ dρ

=
1

2

Γ(1
2

(β − l) + 1)

p! Γ(1
2

(β − l)− p+ 1)

Γ(p+ α + 1) Γ(1
2

(β + l) + 1)

Γ(1
2

(β + l) + p+ α + 2)

=
1

2α + β + l + 2p+ 2

( β − l
2
p

)
/
( α + p+

β + l

2
α + p

)
. (135)

7.2 Expansion of ρβ(1 − ρ2)n+δ as an Rl,δ
n -series in the

case that β = l = 0, 1, ...

We have

ρl(1− ρ2)η+δ =
∑

n=l,l+2,...

bl,δn
N δ
nl

Rl,δ
n (ρ) , (136)

where N δ
nl is given by (10) with α = δ, and

bl,δn =

1∫
0

ρl(1− ρ2)η+δ Rl,δ
n (ρ)

ρ2 dρ

(1− ρ2)δ

=

1∫
0

ρ2l+1(1− ρ2)η+δ P (δ,l+1/2)
p (2ρ2 − 1) ρ dρ . (137)

Proceeding as in (39–43) with Rodriguez’ formula, partial integrations and
the Beta-integral, we get now

bl,δn =
1

2

(−1)p Γ(η + 1)

p! Γ(η − p+ 1)

Γ(δ + η + 1) Γ(l + p+ 3/2)

Γ(δ + η + l + p+ 5/2)

=
(−1)p

2δ + 2η + 2l + 2p+ 3

( η
p

)
/
( δ + η + l + p+ 1/2

δ + η

)
. (138)

For the 2D case, for expanding

ρl(1− ρ2)η+δ =
∑

n=l,l+2,...

2bl,δn
2N δ

nl

2Rl,δ
n (ρ) , (139)
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we require 2N δ
nl of (13) with α = δ, and

2bl,δn =
(−1)p

2δ + 2η + 2l + 2p+ 2

( η
p

)
/
( δ + η + l + p

δ + η

)
. (140)

8 Radial profile for all-scale wavelet trans-

form

We consider radial profiles of the form ρβ(1− ρ2)α as a candidate for the
radial part B(ρ) of a separable function F (ϑ, ϕ, ρ) = A(ϑ, ϕ)B(ρ) on the
unit ball whose 3D Fourier transform should act as an anisotropic wavelet ψ
of an all-scale wavelet. We take β an even integer ≥ 0 and α an integer ≥ 0.
The expansion in (130) with coefficients given by (135) is then finite for l =
0, 2, ... . One can now opt to use these coefficients directly, or, alternatively,
to compute them recursively in l = 0, 2, ... as in Sec. 5, to obtain the 3D
Fourier transform of AFunkB according to Subsec. 2.5.

The profile B has its maximum over ρ ∈ [0, 1] at

ρmax =
( 1

2
β

α + 1
2
β

)1/2
, (141)

and

Bmax = B(ρmax) =
(1
2
β)

1
2
β αα

(α + 1
2
β)α+

1
2
β
. (142)

For somewhat larger values of α and β, the profile B is rather spiky, and this
is considered unfavourable when an all-scale wavelet is desired. We present
a simple means to improve B in this respect. We consider, to this end, B as
a function of ρ2, and we multiply this function by the second order Taylor
expansion of 1/B around ρ2 = ρ2max. Thus, we let

g(x) = x
1
2
β(1− x)α , (143)

so that B(ρ) = g(ρ2), and we set

h(x) = g(x)
( 1

gmax

+
1

2

(1

g

)′′
(xmax)(x− xmax)

2
)

=
g(x)

gmax

(
1 +

1

2

(1

g

)′′
(xmax) gmax(x− xmax)

2
)
. (144)
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With xmax = ρ2max and gmax = g(xmax) = Bmax, we compute

1
2
γ :=

1

2

(1

g

)′′
(xmax) gmax =

(α + 1
2
β)3

αβ
. (145)

Accordingly, we replace b(ρ) = B(ρ)/B(ρmax) by

c(ρ) = b(ρ)
(

1 +
(α + 1

2
β)3

αβ
(ρ2 − ρ2max)

2
)
. (146)

We observe that the computation of the expansion of c(ρ) as in (130) is still
feasible, since c(ρ) is a linear combination of 3 profiles of the same type and
with the same α as B itself.

The above procedure can be repeated, if one wishes, with h(x) in (144)
instead of g(x) in (143). It turns out that h(x) is maximal at

x =
1
4
β2 + 1

2
αβ + 2α

(α + 1
2
β + 2)(α + 1

2
β)

, (147)

a result that is obtained from a lengthy calculation, rendering this second
step analytically feasible.

In Fig. 2a, we show b(ρ) = B(ρ)/Bmax where B(ρ) = ρβ(1−ρ2)α, 0 ≤ ρ ≤
1, for α = 6 and β = 2. This B is maximal at ρmax = 7−1/2, with maximal
value Bmax = 66/77. In Fig. 2b, we show c(ρ) = b(ρ)(1 + 1

12
73(ρ2 − 1

7
)2) that

flattens B in accordance with (146). This c is maximal at (19/63)1/2.
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Figure 2: Plot of (a) b(ρ) = 776−6ρ2(1− ρ2)6, 0 ≤ ρ ≤ 1, and of its flattened
version (b) c(ρ) = b(ρ)(1 + 1

12
73(ρ2 − 1

7
)2), 0 ≤ ρ ≤ 1, obtained using (146).
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9 Radial profile for multiscale wavelet trans-

form

We consider now the setting of Sec. 6 in which we choose

C(ρ) = (1− ρ2)η , 0 ≤ ρ ≤ 1 . (148)

Thus we consider the scaled-and-truncated standard profiles

S = S(ρ ; β, δ ; η ; ε) = ρβ(1− ε2ρ2)η (1− ρ2)δ , 0 ≤ ρ ≤ 1 , (149)

with fixed truncation parameters β, δ ≥ 0, shape parameter η ≥ 0, and
scaling parameter ε ∈ [0, 1]. We take β, η and δ integer with β even.

The C in (148) has an explicit expansion in standard 3D radial poly-
nomials R0,0

2k , k = 0, 1, ... , which is obtained from Subsec. 7.2 by choosing
l = δ = 0 and η = α in (136). Thus, for any ε, we can apply the procedure
given in Sec. 6 to find the expansion of S in (149) in radial functions R0,δ

2k ,
k = 0, 1, ... . From this expansion, we can find all expansions of S in radial
functions Rl,δ

l+2s, s = 0, 1, ... , with l = 0, 2, ... using the recursion in Sec. 5,
see (89). The resulting expansion coefficients can be tested on correctness
for the case that ε = 1 and β = l (even by assumption) by using the explicit
expansion of ρl(1 − ρ2)η+δ in radial functions Rl,α

n , n = l, l + 2, ... , as given
in Subsec. 7.2. The whole aggregate of expansion coefficients is then used,
as in Subsec. 2.5, to find the 3D Fourier transform of AFunk S.

The S-profiles (149) vary between the extreme cases

Sε=1 = ρβ(1− ρ2)η+δ and Sε=0 = ρβ(1− ρ2)δ , 0 ≤ ρ ≤ 1 , (150)

with respective maxima

(1
2
β)

1
2
β (η + δ)η+δ

(1
2
β + η + δ)

1
2
β+η+δ

and
(1
2
β)

1
2
β δδ

(1
2
β + δ)

1
2
β+δ

, (151)

assumed at

ρ(1) =
( 1

2
β

1
2
β + η + δ

)1/2
and ρ(0) =

( 1
2
β

1
2
β + δ

)1/2
. (152)

9.1 Scaling parameter as a function of arg max S(ρ)

The following facts can be established by elementary means. For any
ε ∈ [0, 1], the profile S has a unique maximum at a point ρ = ρ(ε) ∈ [0, 1].
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The function ρ(ε) increases from ρ(1) at ε = 1 to ρ(0) at ε = 0 when ε
decreases from 1 to 0. Given any value ρ ∈ [ρ(1), ρ(0)], we have ρ(ε) = ρ for

ε = ε(ρ) = ε =
1

ρ

( 1
2
β − (1

2
β + δ) ρ2

1
2
β + η − (1

2
β + η + δ) ρ2

)1/2
. (153)

The right-hand side of (153) is well-defined for all

ρ ≤ ρ(0) ≤
( 1

2
β + η

1
2
β + η + δ

)1/2
. (154)

Allowing ρ < ρ(1) in (153) would lead to ε > 1, which we have excluded. Of
course, we can invert (153) so as to obtain ρ as a function ε, but the resulting
formula lacks transparency. For values of ρ sufficiently below ρ(0), we have
the approximation

ε ≈ 1

ρ

( 1
2
β

1
2
β + η + δ

)1/2
=
ρ(1)

ρ
, (155)

allowing an interpretation of ε as a true scaling parameter.

9.2 Design example

In designing the parameters β, δ and η in (149), so that S ranges through
a desired set of unimodal profiles when ε decreases from 1 to 0, the following
issues should be taken into account:

1. the position of the maximum of S ranges between ρ(1) and ρ(0), in ac-
cordance with Subsec. 9.1,

2. in order that the profiles S accommodate a large range [ρ(1), ρ(0)], while
ε of (153) has a credible interpretation as a scaling parameter on a sub-
stantial part of that range, one should take 1

2
β large compared to δ and

η large compared to 1
2
β + δ,

3. large values of δ and η result into spiky profiles S, necessitating a large
number of values of the scaling parameter ε to obtain a sufficient uniform
coverage of the range [ρ(0), ρ(1)],

4. large values of δ and η imply that the various expansion and connection
coefficients contain binomials and Pochhammer symbols of high order, and
this can be avoided by recursive computation such as was demonstrated
for the connection coefficients C at the end of Sec. 5.
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Figure 3: Normalized profiles Si(ρ) = ρ16(1− ε2i ρ2)150 (1− ρ2)4 for the values
εi = 1, (3/7)1/2, (8/47)1/2, (32/963)1/2, 0 of the scaling parameter, yielding
maximum positions ρi = 2/9, 1/3, 1/2, 3/4, (2/3)1/2 for i = 0, 1, 2, 3, 3.2095 =
1
2

+ ln 3/(ln(3/2)), so that ρi = 2
9

(3
2
)i. The sum function is given as∑3

i=0 Si(ρ) and avoids the profile with εi = 0.

Some of these issues are illustrated in Fig. 3 that considers the case that β =
16, η = 150 and δ = 4 in (149). The value δ = 4 provides normally sufficient
smoothness and decay of the profiles at the endpoint ρ = 1. The large value
β = 16 provides, in general, more than sufficient decay at the other endpoint
ρ = 0; it has been chose so large to achieve that the S-profiles accommodate
a ρ-range extending all the way to ρ(0) = (2/3)1/2 = 0.8165. Next, the
large value η = 150 has been chosen so that the range accommodated by
the S-profiles starts at a value as low as ρ(1) = 2/9 = 0.2222. In Fig. 3, the
extreme S-profiles with ε = 0 and ε = 1 occur at the right-most and left-most
position, respectively. The three other values of the scaling parameter ε have
been chosen such that the respective maxima occur at ρi = 1/3, 1/2, 3/4,
i.e., at 2

9
(3
2
)i, i = 1, 2, 3. It appears that these three profiles, together with

the one with ε = 1, provide an adequate coverage of the total range [ρ =
0.18, ρ = 0.85], as demonstrated by the sum function of these four profiles
that is pretty close to being constant on the mentioned range. The values
of ε that achieve the desired positions of the maxima are found using (153).
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They are given by ε0 = 1 = (2/3)0, and by

ε1 =
√

3/7 = 0.6546 ≤ (2/3)1 = 0.6666 , (156)

ε2 =
√

8/47 = 0.4125 ≤ (2/3)2 = 0.4444 , (157)

ε3 =
√

32/963 = 0.1882 ≤ (2/3)3 = 0.293 (158)

for the values of the scaling parameters corresponding to ρi = 2/9 and 1/3,
1/2, 3/4, respectively. These values of εi are somewhat, but not dramatically,
below ρ(1)/ρi, see (155).
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