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The three-dimensional frequency transfer function for optical imaging systems

has been introduced by Frieden in the 1960’s. The analysis of this function and

its partly back-transformed functions (two-dimensional and one-dimensional

optical transfer functions) in the case of an ideal or aberrated imaging sys-

tem has received relatively little attention in the literature. Regarding ideal

imaging systems with an incoherently illuminated object volume, we present

analytic expressions for the classical two-dimensional x-y transfer function in

a defocussed plane, for the axial z-transfer function in the presence of defo-

cussing and for the x-z-transfer function in the presence of a lateral shift δy

of the incoherent line illumination pattern in object space.

For an aberrated imaging system we use the common expansion of the aber-

rated pupil function with the aid of Zernike polynomials. It is shown that the

line integral appearing in Frieden’s three-dimensional transfer function can be

evaluated for aberrated systems using a relationship established first by Cor-

mack between the line integral of a Zernike polynomial over a full chord of the

unit disk and a Chebyshev polynomial of the second kind. Some new devel-

opments in the theory of Zernike polynomials from the last decade allow us to

present explicit expressions for the line integral in the case of a weakly aber-

rated imaging system. We outline a similar, but more complicated, analytic

scheme for the case of severely aberrated systems.
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1. Introduction

The three-dimensional frequency transfer function [1] is the extension of the two-dimensional

transfer function for the image formed in a plane in image space that is generally perpen-

dicular to the optical axis. After the advances that took place in the forties and fifties of

the 20th century in the field of diffraction theory of optical images, see e.g. [2] and [3],

the (two-dimensional) spatial frequency concept in optical imaging was introduced via the

pioneering work of Duffieux [4]; it was followed by the interesting application of the spatial

filtering technique [5]. The spatial frequency transfer in optical imaging was analyzed in

depth in some seminal publications by Hopkins, see [6]-[8], and in his contribution to Ch. 10

in [9]. Not only the imaging of incoherently or coherently illuminated objects was treated

by him but also the more general case of partially coherent object illumination, a frequently

used intermediate approach in microscopy for achieving optimum image contrast. Numerical

evaluations of two-dimensional transfer functions were carried out for defocussed systems

and for systems suffering from primary aberrations like spherical aberration [10],[11], coma

[12] and astigmatism [13]. For incoherently illuminated objects in an imaging systems with

higher order aberration terms, the numerical calculations, basically an autocorrelation of the

pupil function, had to be carried out in a careful way because of the highly oscillating phase

function close to the rim of the pupil function. Nowadays, most optical design programs

provide the user with a means to obtain the two-dimensional ’transverse’ transfer function

of an optical system.

With the increasing interest in (microscopic) imaging in three dimensions, the need for a

more widely applicable optical transfer function arose. Fortunately, a remarkable publication

in this direction was written at an early stage [1]. It remained relatively unnoticed until the

strong interest in out-of-plane imaging developed, for instance, in the case of high-resolution

living cell research. The publication [1] was limited to a small-aperture scalar imaging and

considered only the two extreme cases of fully coherent or fully incoherent imaging. The

partially coherent imaging condition for three-dimensional frequency transfer was treated in

[14]; applications in three-dimensional microscopic imaging are found in [15]-[16], the influ-

ence of spherical aberration or an annular pupil geometry in [17]. An overview of the scalar

three-dimensional transfer function and some lower-dimensional transfer function examples

are found in [18]. The refinements that are needed to describe the three-dimensional transfer

function in the case of vector imaging at high numerical aperture are discussed in [19]-[22].
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In this paper we first present some analytic results for the ’transverse’ x-y transfer function

in the presence of defocussing, applied to an ideal imaging systems. The effect of defocussing

is equally analyzed for the one-dimensional axial z-transfer function. In the case of the two-

dimensional x-z transfer function we give analytic results for the value of this function when

the receiving plane in image space is laterally shifted in the y-direction. For an aberrated

imaging system, we analytically evaluate the line integral that is encountered in Frieden’s

original paper. A relatively simple expression is obtained for this line integral if the system

is weakly aberrated. For a severely aberrated imaging system, we give the procedure that

allows to obtain an analytic result.

The contents of this paper are organized as follows. In Section 2 we define the coordinate

systems and the imaging geometry and briefly reproduce the basic results given in [1] for

incoherently and coherently illuminated objects. In Section 3 we give the analytic results

for ideal imaging systems that were discussed above. Section 4 presents the calculation of

the line integral related to the three-dimensional transfer function of an aberrated imaging

system and the calculation of the classical two-dimensional optical transfer function (OTF ).

Section 5 gives the conclusions.

2. The three-dimensional scalar transfer function

In this Section we present a rather detailed introduction to the three-dimensional transfer

function with an outline of the approximations involved and the domain of validity of the

results. We also keep scrupulously track of all proportionality factors involved between the

optical quantities in object, pupil and image space. Keeping track of these factors, we can

at will transform (partly) forward and backward between the spatial and the frequency

domain and get the identity result after a complete transformation cycle. Although we give

the three-dimensional transfer function for both coherent and incoherent illumination, it is

on the result for an incoherently illuminated object that we will further elaborate in the

remaining part of this paper.

In Fig. 1 we have depicted the geometry of a scalar imaging system that images a certain

volume V in object space to a volume V ′ in image space. The three-dimensional (aberrated)

point-spread function of an object point Q is represented by the shaded region around the

paraxial image point Q′ of Q. This point-spread function is obtained from the diffraction

integral related to the diffracted wave present in the exit pupil, centered at E ′0, of the
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Fig. 1. Imaging of an entire object volume V from object to image space.

imaging system. For a general off-axis object point Q in the volume V at an angle ε

with the optical axis, we construct the appropriate tilted and rotated coordinate systems

that describe the wave incident in the entrance pupil through E0 and, after propagation

through the optical system, its modified version in the exit pupil through E ′0. For a certain

volume element V in object space, the imaging aberration introduced by the optical system

can be supposed to be stationary with respect to the coordinates (x, y, z) in object space.

This means that the point-spread function in image space will be stationary too over the

volume element V ′ that is determined by the paraxial coordinate relationships between

these volume elements. It was shown in [1] that in this case the intensity distribution in

image space is obtained by a convolution operation of the object intensity distribution and

the image-side intensity point-spread function. This holds for an incoherently illuminated

object; for a coherently illuminated object, the same reasoning holds with respect to the

object amplitude distribution in V and the amplitude point-spread function in image space.

In practice, the stationarity of aberration is limited in transverse and axial extent by the ray

mapping between object and image space. For the very frequently used Abbe sine condition

for the mapping of rays form an axial object point, the stationarity of aberration is large

in the transverse direction within an image volume but it can be very limited in the axial

direction, even as small as the Rayleigh focal depth.

In the low-aperture scalar imaging approximation, the stationarity of aberration is of no

concern as the field angle ε is supposed to be negligibly small. This also implies that the
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tilt of the pupil reference spheres can be neglected when treating the diffraction problem. It

also means that their spherical shape can be sufficiently represented by a parabolic shape.

The diffraction integral is then reduced to an integral in which the pathlength differences are

approximated by at the most quadratic expressions in the pupil and image coordinates. For

the calculation of the diffraction integral of the Fresnel type from exit pupil to image volume

we now use the simplified geometry of Fig. 2. The object and image space coordinates of
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Fig. 2. Definition of coordinates in object and image space for the scalar low-aperture

imaging approximation. The shaded object volume is imaged towards the shaded volume

in image space. The three-dimensional point-spread function, centered in the origin at

Q′, originates from the object point Q, and Q′′(x′, y′, z′) is a general point of the three-

dimensional point-spread function.

an object point Q and its corresponding image point Q′ are given in the general picture

of Fig. 1 by (x, y, z)Q for the object point and by (x′, y′, z′)Q′ for the paraxial image point

Q′. In the simplified geometry of Fig. 2, the oblique auxiliary axis at an angle ε′ for the

imaging of an off-axis object volume has been replaced by the optical axis and Q and Q′

coincide with the coordinate origins in object and image space. The coordinates of a general

point on the entrance and exit pupil spheres, approximated by the paraboloids with identical

curvatures, are given by (X, Y, Z)P and (X ′, Y ′, Z ′)P ′ ; the mapping between P and P ′ on

the pupil surfaces obeys the paraxial imaging laws. The aberrations associated with off-axis

imaging are mapped on the exit pupil through E ′0. The spatial frequencies in image space

in Fig. 1 are linked to the tilted and rotated coordinate system along the oblique axis at an

angle ε′. In the low-aperture and small field approximation, these frequencies are identified

with the spatial frequencies (ω′x, ω
′
y, ω

′
z) defined along the optical axis z′ and the lateral axes
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x′ and y′.

With all these simplifications, the diffraction integral that produces the complex amplitude

U ′d of the point-spread function in image space is given by

U ′d(x
′, y′, z′) =

−i
λ r′E

+∞∫∫
−∞

U(X ′, Y ′) exp [ik(P ′Q′′ − P ′Q′)] dX ′dY ′

=
−ik

2π r′E
exp

{
ik

(
z′ +

x
′ 2 + y

′ 2

2r′E

)}
×

+∞∫∫
−∞

U(X ′, Y ′) exp

{
−ik

[(
X
′ 2 + Y

′ 2

2r
′ 2
E

)
z′ +

X ′x′ + Y ′y′

r′E

]}
dX ′dY ′,

(1)

with the wavenumber k equal to 2π/λ and U(X ′, Y ′) the complex amplitude on the exit

pupil sphere of the wave that was issued from a point source in Q in the object plane. The

intensity point-spread function I ′d in image space is put equal to |U ′d|2.

To obtain the three-dimensional Fourier transform of the amplitude or intensity distribution,

a definition of the elementary plane wave is needed. We write the complex amplitude of a

(scalar) plane wave as A(r, t)=A0 exp[i(k ·r−ωtt)], with k the wave vector and ωt the time

frequency. For the spatial Fourier transform of a general wave with wave function f(r, t)

and its inverse transform we then have the expression

F (ω, t) =

+∞∫∫∫
−∞

f(r, t) exp[−i(ω · r)] dr ,

f(r, t) =
1

(2π)3

+∞∫∫∫
−∞

F (ω, t) exp[+i(ω · r)] dω , (2)

where the sign of the exponential in the inverse transform is in accordance with our definition

of the sign of the phase term of an elementary plane wave.

With this definition of the plane wave we work out the three-dimensional Fourier transforms

along the lines of [1] to obtain for the incoherent transfer function

Ĩ ′inc(ν
′
x,n, ν

′
y,n, ν

′
z,n) =

λ r
′ 2
E

ν ′t,n

B∫
A

U0

(
ρ0

[
ν ′t,n
2
−
ν ′z,n
ν ′t,n

]
, ρ0Y

′
r,n

)
×

U∗0

(
ρ0

[
−
ν ′t,n
2
−
ν ′z,n
ν ′t,n

]
, ρ0Y

′
r,n

)
dY ′r,n , (3)
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with U0 the lens pupil function in the rotated coordinate system and 2ρ0 the pupil diamater.

A frequency ν ′ is given by ω′/2π and the normalized spatial coordinates (x′n, y
′
n, z
′
n) and

frequencies (ν ′x,n, ν
′
y,n, ν

′
z,n) follow from

x′n = (sinα′/λ)x′ , y′n = (sinα′/λ) y′ , z′n = (sin2 α′/λ) z′ ,

ν ′x,n = (λ/ sinα′) ν ′x , ν ′y,n = (λ/ sinα′) ν ′y , ν ′z,n = (λ/ sin2 α′) ν ′z , (4)

with α′ the opening angle of an imaging beam, the radial position r′n equal to (x
′ 2
n + y

′ 2
n )1/2

and the transverse frequency ν ′t,n given by (ν
′ 2
x,n + ν

′ 2
y,n)1/2.

With respect to the analysis in [1] we have chosen the line integral in the exit pupil to be

along a rotated Y ′-axis, denoted by Y ′r in Fig. 3. The value of X ′r,n-coordinate of the line l1

in this rotated coordinate system is fixed, as it is seen from the X-arguments of the pupil

functions U0 and U∗0 in Eq.(3). In the absence of axial modulation in the object, the line

l1 passes through the point P0 with X ′r,n;P0
= ν ′t,n/2. The rotation angle θν follows from

Y’r
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l
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Fig. 3. Example of a line segment AB of line l1 through Ps, parallel to the Y ′r -axis. A

line integral over this segment is needed to obtain the three-dimensional frequency transfer

function.

cos θν = −ν ′x,n/ν ′t,n and sin θν = −ν ′y,n/ν ′t,n. For a general object showing axial modulation,

the location of the line l1 is determined by the coordinate of the point Ps and the length of

|E ′0Ps| equals

X ′r,n;Ps =
ν ′t,n
2
−
ν ′z,n
ν ′t,n

. (5)
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For an aberration-free imaging system, the length of the line AB in Fig. 3 determines the

value of the integral in Eq.(3), yielding,

Ĩ ′inc(ν
′
t,n, ν

′
z,n) =

2λr
′ 2
E

ν ′t,n

√
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

. (6)

In this equation we used |ν ′z,n| because the result is symmetric with respect to the line A0B0

in the aberration-free case.

In the case of a coherently illuminated object, the three-dimensional transfer function Ĩ ′c is

given by

Ĩ ′c(ν
′
x,n, ν

′
y,n, ν

′
z,n) =

−iλ2r′E
sin2 α′

δ

(
ν ′z,n −

1

sin2 α′
+
ν
′ 2
x,n + ν

′ 2
y,n

2

)
U(−ρ0ν ′x,n,−ρ0ν ′y,n) . (7)

In Fig. 4 we have plotted the incoherent and coherent three-dimensional transfer functions

as a function of the axial and transverse normalized spatial frequencies, ν ′z,n and ν ′t,n, re-

spectively. It appears from graph a) and b) that the incoherent and the coherent transfer

function have very different ranges of ν ′z,n where they are different from zero. For the trans-

verse frequency ν ′t,n we observe a factor of 2 difference in range between the incoherent and

coherent transfer function, a phenomenon that also occurs for the classical two-dimensional

transfer function.

3. Lower-dimensional transfer functions derived from the 3D function

In this section we give examples of lower-dimensional transfer functions for an aberration-free

system. It is shown that the transfer function of an, on average, defocused three-dimensional

image follows in a simple way from the 3D master function.

A. The defocussed two-dimensional transverse transfer function

The first example applies to the two-dimensional transverse frequency transfer function that

was at the origin of the frequency analysis of optical systems. In the case of an incoherently

illuminated object, the two-dimensional transfer function follows from an inverse transform

according to Eq.(2) of Ĩ ′inc in Eq.(6). The inverse transform is with respect to the axial

frequency ω′z = 2πν ′z,n sin2 α′/λ. For the aberration-free case we thus obtain the transfer

function, with the formal integration interval [−∞,+∞],

OTFt(ν
′
t,n; z′n) = 2ρ20

∫
1

ν ′t,n

√
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

exp(+i2πν ′z,nz
′
n) dν ′z,n . (8)
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Fig. 4. a) The incoherent 3D transfer function Ĩinc; the singularity in the graph at the origin

has been truncated to a finite value. b) The parabolic surface in space on which the coherent

3D transfer function Ĩc assumes an infinitely large value (α′ = π/6).

We restrict ourselves to values of ν ′z,n that yield a real-valued square root in the integrand of

Eq.(8). The integration limits are then given by −ν ′t,n(1− ν ′t,n/2) ≤ ν ′z,n ≤ ν ′t,n(1− ν ′t,n/2).

This interval is reduced to 0 ≤ ν ′t,n(1− ν ′t,n/2) if we integrate over twice the real part of the

integrand in Eq.(8). With the substitution ν ′s = ν ′t,n/2 + |ν ′z,n|/ν ′t,n we obtain the expression

OTFt(ν
′
t,n; z′n) = 4ρ20 <

{
exp(−iπν ′ 2t,nz′n)

∫ 1

ν′t,n/2

√
1− ν ′ 2s exp(+i2πν ′t,nν

′
sz
′
n) dν ′s

}
. (9)

The integral is evaluated by making a further substitution ν ′s = cosφ. The exponential

factor exp(+i2πν ′t,nz
′
n cosφ) is expanded using exp(ia cosφ) =

∑+∞
m=−∞ i

mJm(a) exp(imφ).

We then obtain the result

OTFt(ν
′
t,n; z′n) = 4ρ20 <

{
exp(−iπν ′ 2t,nz′n)

+∞∑
−∞

imJm(2πν ′t,nz
′
n)

∫ φ0

0

sin2 φ exp(imφ) dφ

}
,

(10)
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with φ0 = arccos(ν ′t,n/2).

The evaluation of the remaining integral yields the result

OTFt(ν
′
t,n; z′n) = πρ20 <

{
2

π
exp(−iπν ′ 2t,nz′n)

+∞∑
m=−∞

im Jm(2πν ′t,nz
′
n) ×

φ0

[
exp

(
imφ0

2

)
sinc

(
mφ0

2

)
− 1

2
exp

(
i(m+ 2)φ0

2

)
sinc

(
(m+ 2)φ0

2

)
−1

2
exp

(
i(m− 2)φ0

2

)
sinc

(
(m− 2)φ0

2

)]}
. (11)

In a different form, this analytic result was already obtained by Hopkins [7] using an inte-

gration over the two-circle overlap area of the classical two-dimensional transfer function.

Numerical evaluations of the (strongly) defocused two-dimensional OTFt were presented by

Stokseth [23]. For the in-focus incoherent transfer function we get, apart from the leading

factor πρ20, the classical normalized result for an aberration-free system,

OTFt(ν
′
t,n; 0) =

2

π
(φ0 − sinφ0 cosφ0) =

2

π

arccos

(
ν ′t,n
2

)
−
ν ′t,n
2

√
1−

(
ν ′t,n
2

)2
 . (12)

The through-focus behavior of the two-dimensional transfer function has been plotted in
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Fig. 5. a) The two-dimensional transfer function OTFt with the defocussing distance z′n as

parameter (aberration-free system). b) The binary phase function PTFt.

Fig. 5, using Eq.(11). The infinite series has been truncated to a finite number of terms such
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that a precision of 10−4 has been attained in the real part of the expression in (11). The

phase transfer function PTFt is binary, changing between 0 and π, because OTFt is a real

function and Fig. 5b shows for which values of ν ′t,n the OTFt changes sign as a function of

the defocusing distance z′n. The foregoing analysis shows that the calculation of the optical

transfer function OTFt by means of a side step via the three-dimensional master function

provides us with a simple analytic expression for OTFt. The standard calculation of OTFt

requires a two-dimensional autocorrelation integral over the common area of two shifted

pupil functions.

B. The incoherent axial transfer function in the presence of a lateral off-set

The axial transfer function of an ideal system in the presence of defocussing follows from

a double inverse Fourier transform with respect to the frequencies ω′x and ω′y of the 3D

incoherent transfer function,

OTFz(ν
′
z,n;x′n, y

′
n) =

2ρ20
λ

∫∫
1

ν ′t,n

√
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

×

exp
{

+i2π(ν ′x,nx
′
n + ν ′y,ny

′
n)
}
dν ′x,ndν

′
y,n , (13)

where we used again the normalized spatial coordinates and spatial frequencies. The in-

tegration range follows from the requirement that the argument of the square root in the

integrand is non-negative. We switch to polar coordinates in the exit pupil and in the image

space according to  ν ′x,n = ν ′t,n cos θ ,

ν ′y,n = ν ′t,n sin θ ,
and

 x′n = r′n cosφ ,

y′n = r′n sinφ .
(14)

The axial incoherent transfer function is then given by

OTFz(ν
′
z,n; r′n) =

2ρ20
λ

2π∫
0

∫ √
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

×

exp
{

+i2πν ′t,nr
′
n cos(θ − φ)

}
dν ′t,ndθ . (15)

For the case that r′n ≡ 0, this expression was evaluated in [18]. For the axial frequency

transfer of a periodic line object in a position that is laterally shifted over a distance r′n

in the image plane, we need to consider the integrand including the exponential function.

The integration with respect to the azimuthal coordinate θ yields 2πJ0(2πr
′
nν
′
t,n), and the
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function OTFz is then given by,

OTFz(ν
′
z,n; r′n) = 2kρ20

∫ √
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

J0(2πr
′
nν
′
t,n) dν ′t,n . (16)

For the argument of the square root to be nonnegative, we have the finite integration interval

1 −
√

1− 2|ν ′z,n| ≤ ν ′t,n ≤ 1 +
√

1− 2|ν ′z,n| with 0 ≤ ν ′z,n ≤ 1/2. Using the power series

expansion of the Bessel function J0, we get

OTFz(ν
′
z,n; r′n) = 2kρ20

∞∑
m=0

(−π2r
′ 2
n )m

(m!)2

1+
√

1−2|ν′z,n|∫
1−
√

1−2|ν′z,n|

√
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

(ν ′t,n)2m dν ′t,n

= πρ20 k (1− 2|ν ′z,n|)

{
1 + 2

M∑
m=1

(−π2r
′ 2
n )m

(m!)2

m−1∑
k=0

2k
(
m− 1

k

)
×

(
1

2
.
3

3
. · · · .2k + 1

k + 2

) (
1−

√
1− 2|ν ′z,n|

)2m−2−2k (
1− 2|ν ′z,n|

)k/2}
, (17)

where the semi-analytic expression of Appendix A is used for the remaining integral, and

the truncation index M is chosen in accordance with the truncation strategy described in

the same Appendix.

The normalized axial transfer function OTFz has been plotted as a function of the spatial

frequency ν ′z,n and the lateral off-axis distance r′n. In the case of a z-modulated line object,

the graphs a and b of Fig. 6 show the loss in modulation depth and the phase change when

the intensity distribution is decentered with respect to the scanned line over a distance r′n.

The normalization of the transfer function is with respect to the centred situation where the

transfer function has a triangular shape. In the case of off-axis scanning, the total intensity

incident on a line object becomes less and this is shown by the decrease of the function

OTFz(r
′
n; 0) for a non-modulated object.

C. The incoherent x-z transfer function for an ideal system

Another transfer function that can be derived from the three-dimensional master transfer

function is the x − z-transfer function. This transfer function determines the transfer of

x- and z-frequency components from a thin modulated object plane with y = y0 to the

corresponding (paraxial) image plane with position y′ = y′0. The x − z frequency transfer

is obtained as a function of the lateral shift of the receiving plane in image space from the

nominal position at y′ = y′0.
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Fig. 6. a) The one-dimensional transfer function OTFz as a function of the transverse off-set

r′n (aberration-free system). b) The corresponding phase function PTFz.

Carrying out an inverse Fourier transform with respect to the frequency ω′y of Eq.(6) for the

aberration-free case, we obtain

OTFxz(ν
′
x,n, ν

′
z,n; y′n) =

2ρ20
sinα′

∫
1

ν ′t,n

√
1−

(
ν ′t,n
2

+
|ν ′z,n|
ν ′t,n

)2

exp(+i2πν ′y,ny
′
n) dν ′y,n , (18)

with integration over all ν ′y,n so that the square root is positive real and with ν ′t,n = (ν
′ 2
x,n +

ν
′ 2
y,n)1/2. The integral allows an analytic solution for the centered case, with y′ = 0. The

general case, including the exponential factor, can be treated by expanding this exponential

into powers of ν ′y,n. The first two factors depend on ν ′t,n and are, therefore, even in the

integration variable ν ′y,n; taking into account the integration range, only even terms in the

expansion of the exponential factor need to be retained. With the shorthand writing s = ν ′x,n,

v = ν ′y,n and w = |ν ′z,n| we have the expression

I(s, w; y′n) =
2ρ20

sinα′

∞∑
m=0

(i2πy′n)2m

(2m)!

∫
1

s2 + v2

√
s2 + v2 −

(
s2 + v2

2
+ w

)2

v2m dv . (19)

The remaining integral in Eq.(19), denoted by Im(s, w), is evaluated in Appendix B.0. The

upper index M of the summation over m is established along the same lines as it was done

for the summation in Eq.(17).
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Fig. 7. a) Surface plots of the incoherent x − z transfer function OTF (ν ′x,n, ν
′
z,n, y

′
n) as a

function of the off-set y′n of the three-dimensional point-spread function in the y-direction.

Graph a): y′n=0 ; graph b): y′n=0.25 .

In Fig. 7 we present two surface plots of the function OTFxz for the parameter values y′n = 0

and 0.25. We have a thin object confined to the plane y = 0 that is illuminated by means

of an incoherent line parallel to the plane y = 0. With the aid of Eq.(19) we calculate the

intensity modulation depth measured in image space in the plane y′ = 0 as a function of the

perpendicular distance y of the incoherent line illumination in object space from the plane

y = 0. In normalized diffraction units, this perpendicular distance amounts to y′n in image

space. From the figure we observe the expected decrease in modulation depth when shifting

the illumination by an amount of 0.25 diffraction units off-plane. The representation of

OTF(ν
′
x,n, ν

′
z,n; y′n) had to be limited to finite values of (ν ′x,n, ν

′
z,n). At the origin, the function

OTFxz is singular. This means that, close to the origin, the semi-analytic expression for the

integral Im(s, w) that was given in Appendix B.0 shows a slow convergence to its end value

and that a large number of terms has to be included in the power series summations.

4. The incoherent 3D transfer function of an aberrated imaging system

In this section we address the computation of the three-dimensional transfer function of an

aberrated imaging system, as given by Eq.(3) for the case of incoherent object illumination.

Previous work in this field can be found in Sheppard & Hole [25]. They present analytic

results for distinct weak aberration terms that affect the phase of the transfer function. We
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follow a different path and exploit a specific result for line integrals over the unit disk of

Zernike polynomials. Our approach allows the calculation of the transfer function of both

weakly and strongly aberrated imaging systems. With reference to Fig. 8a, a one-dimensional

integral has to be evaluated along a general line l1 that intersects the unit disk C at the rim

l1

A

B

P ψθ

O

Qρ=1

X

Y l1

0

ρs

O O

A

B

P

C C 1C

0,sC
0 1

Y

X
Q

L R

a) b)

Fig. 8. a) The line integral from A to B along l1 over a disk with circular rim C. b) The line

integral along l1 related to the common area of two pupil functions C0 and C1 with their

centers at O0 and O1, respectively.

points A and B. The perpendicular distance OP from the origin O to l1 is denoted by τ and

the azimuth of OP with respect to the reference axis X is ψ. A general point Q on the line

segment AB is given by its cartesian coordinates r = (X, Y ) or its polar coordinates (ρ, θ)

with X + iY=ρ exp(iθ). The radius of the disk is normalized to unity so that 0 ≤ ρ ≤ 1.

In the case of an aberrated imaging system, we normalize the transverse dimension of the

physical pupil by means of the value ρ0, such that the radial polar coordinate ρ equals unity

on the pupil rim. After normalization of the radial coordinate, the complex amplitude U0 of

the pupil function in Eq.(3) is represented by U ′0(X, Y ). This function U ′0 is expanded with

the aid of Zernike polynomials Z l
k(X, Y ),

U ′0(X, Y ) =
∑
k,l

βlk Z
l
k(X, Y ) =

∑
k,l

βlk R
|l|
k (ρ) exp(ilθ) , (20)

with the lower index k running from k = 0 up to a maximum degree km and |l| ≤ k, k − |l|

even. We should make a remark here on a rotation of the aberration function in Fig. 8b

with respect to the X-axis (equal to the X ′r,n in Fig. 3). The rotation angle between the

X ′r,n-axis and the reference axis in Fig. 3 is given by θν . This means that the azimuthal
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angle θ in a specific Zernike polynomial Z l
k has to be replaced by θ+θν . Taking into account

this rotation of the aberration function in Fig. 8b, a general expansion coefficients βlk has to

be multiplied by a factor exp(ilθν).

The expansion above is useful because an interesting analytic result is available for a line

integral of Z l
k(X, Y ) between two points on the rim of the unit disk (A and B constitute a

full chord of the circular rim of the unit disk C). The analytic result originates from the

Radon transform theory in medical imaging [26]-[29] and reads∫
(X,Y )∈ l1(τ,ψ)

Z l
k(X, Y ) dp =

2

k + 1
(1− τ 2)1/2 Uk(τ) exp(ilψ) , (21)

with dp the infinitesimal path increment along the line l1. The polynomial Uk(x), not to

be confounded with the amplitude function U0, is the Chebyshev polynomial of the second

kind, Uk(x) = sin[(k + 1)α]/ sinα, with x = cosα [24].

To evaluate the line integral in Eq.(3) we need an expression in terms of Zernike polynomials

of the product of two complex amplitude distributions U ′0, associated with a centered pupil

and a shifted version of it, both with identical expansion coefficients. The position of the two

pupils has been depicted in Fig. 8b and pertains to the rotated coordinate system (X ′r,n, Y
′
r,n)

of Fig. 3; for ease of notation, this coordinate system has been denoted by (X, Y ) in Fig. 8. In

the rotated coordinate system, the line l1 is parallel to the Y -axis in Fig. 8b. For compactness

of notation, we denote the coordinates of a general point on the unit disk C0 of Fig. 8b by

means of the position vector r = (X, Y ) = ρ exp(iθ) and the coordinates of the center O1 of

the shifted pupil by the vector a.

The line segment AB along which the line integral of Eq.(3) has to be evaluated is a full

chord of the circle that delimits the disk C1 and also a full chord of the disk C0,s with reduced

radius ρs and centered on O0. It follows from Fig. 3 that ρs is given by

ρs =
√

1− 2|ν ′z,n| , (22)

with the special case ν ′t,n = 1, |ν ′z,n| = 1/2 for which the scaled disk with rim C0,s is reduced

to a point. If negative values of ν ′z,n are considered, the roles of C0 and C1 are interchanged

in the sense that AB is now a full chord of the disk C0 and of a disk C1,s that is a scaled

version of C1 with the scaling factor following again from Eq.(22).

The integrand of the line integral in Eq.(3) is written as U ′0(r) U
′ ∗
0 (r − a). The vector r
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corresponding to a general point Q on l1 and the vector a are given by

r = (ν ′t,n/2− ν ′z,n/ν ′t,n, Y ) , a = (ν ′t,n, 0) . (23)

In the following subsections we use the result of Eq.(21) to evaluate the line integral in Eq.(3).

We will discriminate between weakly aberrated imaging systems and heavily aberrated ones.

A. Weakly aberrated imaging system

In the case of a weakly aberrated imaging system, the leading term in the expansion of

Eq.(20), with coefficient β0
0 and Z0

0(r) = 1 for |r| < 1 and 0 otherwise, dominates all others.

For sufficiently small coefficients βlk it is allowed to use the following approximate expression

U ′0(r)U
′ ∗
0 (r − a) ≈ |β0

0 |2 Z0
0(r)Z0 ∗

0 (r − a) +
∑
k,l

β0
0 β

l ∗
k Z0

0(r)Z l ∗
k (r − a)

+
∑
k,l

βlk β
0 ∗
0 Z l

k(r)Z0 ∗
0 (r − a) , (24)

where in the summations over k, l the term with k = l = 0 should be omitted.

After the insertion of the expressions for the vectors r and a in Eq.(24) and using that

Z0
0(r) = 1 for |r| < 1, the integration of this expression along the line segment AB yields,

respectively, the following terms for a particular Zernike term with indices (k, l) in the

expansion of U ′0,

a) Ia = f3 |β0
0 |2

B∫
A

dY = f3 |β0
0 |2 |AB| = 2f3 |β0

0 |2
√

1−
(
ν′t,n
2

+
ν′z,n
ν′t,n

)2
,

b) Ib = f3 β
0
0 β

l ∗
k

B∫
A

Z l ∗
k (−ν ′t,n/2− ν ′z,n/ν ′t,n , Y ) dY ,

c) Ic = f3 β
0 ∗
0 βlk

B∫
A

Z l
k(ν
′
t,n/2− ν ′z,n/ν ′t,n , Y ) dY ,

(25)

with f3 = λr
′ 2
E /ν

′
t,n the leading factor in front of the line integral of Eq.(3).

When we apply the result of Eq.(21) to the integral Ib, we obtain

Ib = f3
2β0

0 β
l ∗
k

k + 1

[
1−

(
ν ′t,n/2 + ν ′z,n/ν

′
t,n

)2]1/2
Uk
(
ν ′t,n/2 + ν ′z,n/ν

′
t,n

)
exp(ilπ) , (26)

where the exponential factor exp(−ilπ) = (−1)l stems from the fact that the X-argument

of Z l ∗
k is negative in the case of Ib.

For the line integral Ic in Eq.(25), the segment AB is a full chord of the circle C0,s with

reduced radius ρs. The value of τ to be employed in Eq.(21) is thus given by τs = (ν ′t,n/2−
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ν ′z,n/ν
′
t,n)/ρs and the angle ψ equals zero. For the analytic result of Eq.(21) to be applicable

to this line integral, we have to transform the Zernike expansion of the pupil function on the

full disk C0 to an expansion on the disk C0,s with reduced radius ρs. For a single Zernike

polynomial defined on the unit disk we have the following concise expression for its expansion

in Zernike polynomials defined on a disk with reduced size (radius ρs), [30],

Z l
k(ρ, θ) = Z l

k

(
ρs

ρ

ρs
, θ

)
=

∑
k′=|l|,|l|+2, ··· ,k

[
Rk′

k (ρs)−Rk′+2
k (ρs)

]
Z l
k′

(
ρ

ρs
, θ

)
, (27)

with 0 ≤ ρ ≤ ρs and Rk+2
k (ρ) = 0. The line integral Ic is now written as

Ic = f3 β
0 ∗
0 βlk

B∫
A

Z l
k(ν
′
t,n/2− ν ′z,n/ν ′t,n , Y ) dY

= f3 ρs β
0 ∗
0 βlk

B∫
A

Z l
k

[
ρs
(
ν ′t,n/2− ν ′z,n/ν ′t,n

)
/ρs, ρs (Y/ρs)

]
(dY/ρs)

= f3 ρs β
0 ∗
0 βlk

∑
k′=|l|,|l|+2,··· ,k

[
Rk′

k (ρs)−Rk′+2
k (ρs)

] B′∫
A′

Z l
k′

{(
ν ′t,n/2− ν ′z,n/ν ′t,n

)
/ρs, Ys

}
dYs,

(28)

where the coordinates (Xs, Ys) are the normalized coordinates on the disk C0,s and where

the primes attached to the integration endpoints A and B imply that the coordinates of A

and B are now expressed in these normalized coordinates (ρ/ρs, θ) on C0,s. Using the result

of Eq.(21), we finally obtain

Ic = 2f3 ρs β
0 ∗
0 βlk

∑
k′=|l|,|l|+2,··· ,k

εl

[
Rk′

k (ρs)−Rk′+2
k (ρs)

]
k′ + 1

√
1− 1

ρ2s

(
ν ′t,n
2
−
ν ′z,n
ν ′t,n

)2

×

Uk′

{
1

ρs

(
ν ′t,n
2
−
ν ′z,n
ν ′t,n

)}
, (29)

with the quantity εl defined by the sign of ν ′t,n/2− ν ′z,n/ν ′t,n according to

εl =

 1, ν ′z,n ≤ ν
′ 2
t,n/2

exp(ilπ) , ν ′z,n > ν
′ 2
t,n/2

. (30)
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The three-dimensional transfer function Ĩ ′(ν ′t,n, ν
′
z,n) is obtained by a summation over all the

terms of the Zernike expansion of the contributions Ia, Ib and Ic. We obtain the expression

Ĩ ′(ν ′t,n, ν
′
z,n) =

2λr
′ 2
E

ν ′t,n
|β0

0 |2
√

1−
(
ν ′t,n
2

+
ν ′z,n
ν ′t,n

)2

×

[
1 +

∑
k,l

{(
βlk
β0
0

)∗ Uk (ν′t,n2 +
ν′z,n
ν′t,n

)
exp(ilπ)

k + 1
+ ρs

(
βlk
β0
0

)
×

∑
k′=|l|,|l|+2,...,k

εl

[
Rk′

k (ρs)−Rk′+2
k (ρs)

]
k′ + 1

√
1− 1

ρ2s

(
ν′t,n
2
− ν′z,n

ν′t,n

)2
√

1−
(
ν′t,n
2

+
ν′z,n
ν′t,n

)2 Uk′

[
1

ρs

(
ν ′t,n
2
−
ν ′z,n
ν ′t,n

)]}]
.

(31)

B. Imaging system with large aberration

We consider now the general case in which the dominance assumption of the (k, l) = (0, 0)-

term in the Zernike expansion of U ′0 is not valid. The treatment of this case is more involved

and we will only sketch the general approach without giving all the details of the calculation

of coefficients of certain essential function expansions. For the case with larger aberration of

the imaging system, it is required to evaluate the line integral of the cross-terms that were

neglected in the approximate expression for the integrand of Eq.(24). The line integral of a

general term is given by

Id = f3 β
l′′

k′′ β
l ∗
k

B∫
A

Z l′′

k′′(r)
(
Z l
k(r − a)

)∗
dr (32)

and we have to consider all possible combinations of integers (k
′′
, l
′′
) and (k, l) with k

′′−|l′′ |

and k − |l| even and non-negative (an exception being made for the case that k
′′
= l

′′
= 0

or k = l = 0). The vector components of r and a were given in Eq.(23) and we have that

dr = (0, dY ).

Using the extension of [31], Theorem 3.1 (described after its proof), to the case of unrestricted

values of |r| and |a| with Z l
k(r) = R

|l|
k (ρ) exp(ilθ) extended to all ρ > 0 accordingly, we can

write

Z l
k(r − a) =

∑
k′,l′

Dl l′

k k′ Z
l′

k′(r) , (33)

with explicit, finitely many non-zero, but possibly large coefficients D. Inserting this into

the integral in Eq.(32), the products Z l′′

k′′(r)
(
Z l′

k′(r)
)∗

show up. These products can be
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linearized using the Clebsch-Gordan coefficients related quantities C, see [32],[33],

Z l′′

k′′(r)
(
Z l′

k′(r)
)∗

= Z l′′

k′′(r)Z−l
′

k′ (r) =
∑
k′′′

C l′′,−l′,l′′−l′
k′′,k′,k′′′ Z l′′−l′

k′′′ (r) , (34)

and then the result in Eq.(21) can be used to evaluate the integrals
∫ B
A
Z l
′′−l′

k′′′
(r) dr. This

concludes the outline of the computation of the transfer function of a heavily aberrated

imaging system.

In Fig. 9 we show an example of a three-dimensional transfer function of a heavily aberrated

imaging system. Third-order comatic aberration has been simulated by means of the Zernike

coefficients β1
3 = β−13 = i, with the coma tail in image space being oriented along the X ′r,n-

axis. These two lowest order expansion coefficients of the complex pupil function do not

exactly represent the wave aberration exponential but they are sufficient to show the effect of

a large aberration on the transfer function. The numerically calculated values of the transfer

function and the analytical results have not been shown separately, the only difference being

the numerical accuracy involved. The figure shows that the frequency transfer is hardly

affected by the large aberration when the frequency combination (ν ′t,n, ν
′
z,n) is close to the

cut-off region. As it is the case for the classical transfer function OTFt in the presence of

aberration, the largest degradation is observed for the mid-spatial frequencies.

C. The aberrated OTFxy obtained from the three-dimensional transfer function

We use the analytic expression for the line integral occurring in the three-dimensional trans-

fer function of an aberrated system to calculate the classical two-dimensional OTFxy; this

was already done for the non-aberrated case in Subsect. 3 A to obtain the values of the

transfer function in a defocused plane. Referring to Fig. 8b, we observe that the overlap

integral over the common area of the two disks C0 and C1 can be obtained by sweeping the

line integral AB through the general point P from the point R to L, these points corre-

sponding to the minimum and the maximum allowed values of ν ′z,n. For a single Zernike

aberration term, we have to calculate the integral over ν ′z,n of Ia, Ib and Ic in the case of

weak aberration and also over Id for heavily aberrated imaging systems. As an example, we

consider the integral of Ib from the central point of the segment LR to the extreme point

L; this corresponds to the integration interval [0 ≤ ν ′z,n ≤ (1 − ν ′t,n/2) ν ′t,n]. The resulting

21



0
0.5

1
1.5

2 0
0.1

0.2
0.3

0.4
0.5

0

1

2

3

4

ν’z,n

ν’x,n

 |I’   |~
inc

0

0.5

1

1.5

2 0
0.1

0.2
0.3

0.4
0.5−0.5

0

0.5

π

π

π

 arg(I’    )~
inc

ν’x,n

ν’z,n

a) b)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

 

 

ν
x,n

 = 0.5

ν
x,n

 = 1.0

ν
x,n

 = 1.5

z,n’ν

’
’

’

a

a

a

 |I’   |~
inc p

p

p

c)

Fig. 9. a) A surface plot of the modulus of the aberrated three-dimensional transfer function

Ĩ ′inc as a function of the (positive) frequencies (ν ′x,n, 0, ν
′
z,n) with ν ′x,n ≥ 0.1. b) The argument

of the transfer function. c) Three cross-sections of |Ĩ ′inc| as a function of ν ′z,n for the selected

frequency values ν ′x,n=0.5, 1.0 and 1.5. The aberrated curves have been labelled with the

character a, the curves for a perfect system with the character p. Aberration coefficients:

β0
0 = 1, β1

3 = +i, β−13 = +i.
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integral over ν ′z,n, associated with a full chord on the disk C1 with ψ = π, is given by

∫
Ib dω

′ = (−1)l
2ρ20
ν ′t,n

β0
0 β

l ∗
k

k + 1

(
1−

ν′t,n
2

)
ν′t,n∫

0

[
1−

(
ν ′t,n/2 + ν ′z,n/ν

′
t,n

)2]1/2
Uk
(
ν ′t,n/2 + ν ′z,n/ν

′
t,n

)
dν ′z,n , (35)

where we used that f3 sin2 α′/λ = ρ20/ν
′
t,n. We remark that the integral above is the pro-

jection of the three-dimensional transfer function onto the plane z = 0. According to the

Fourier slice theorem, this projection is equal to the (inverse) Fourier transform of the 3D

transfer function with respect to the spatial frequency ν ′z,n, evaluated at the point z′n = 0.

In optical terms, we obtain (part of) the two-dimensional x-y transfer function in an image

plane with no defocus (z′n = 0). Denoting the integral over Ib over the positive part of the

ν ′z,n-interval by OTFb+(ν ′x,n, ν
′
y,n; z′n) we obtain after the substitution q = ν ′t,n/2 + ν ′z,n/ν

′
t,n,

OTFb+(ν ′x,n, ν
′
y,n; 0) = 2ρ20 (−1)l

β0
0 β

l ∗
k

k + 1

1∫
ν′t/2

√
1− q2 Uk(q) dq . (36)

With the substitution q = cosφ we get the expression

OTFb+(ν ′x,n, ν
′
y,n; 0) = 2ρ20 (−1)l

β0
0 β

l ∗
k

k + 1

arccos(ν′t/2)∫
0

sinφ sin[(k + 1)φ] dφ . (37)

and this yields the result

OTFb+(ν ′x,n, ν
′
y,n; 0) = ρ20 (−1)l

β0
0 β

l ∗
k φ0

k + 1
{sinc(kφ0)− sinc[(k + 2)φ0]} , (38)

with φ0 = arccos(ν ′t,n/2).

The second contribution to OTFb(ν
′
x,n, ν

′
y,n; 0) comes from the ν ′z,n-integration interval

[−νt,n(1 − ν ′t,n/2), 0] where the full chord is found on the disk C0 with τ=ν ′t,n/2 − ν ′z,n/ν ′t,n
and ψ = 0 or π depending on the sign of τ . Proceeding along the same lines as above we

have the result

OTFb−(ν ′x,n, ν
′
y,n; 0) = ρ20

β0
0 β

l ∗
k φ0

k + 1
{sinc(kφ0)− sinc[(k + 2)φ0]} . (39)

The contributions to the OTF -function coming from the integrations over Ic and Id are

calculated according to the same scheme. After summation of all analytic terms we obtain

the final value of the transfer function.
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5. Conclusion

It has been shown that the three-dimensional transfer function can be analytically evaluated

in a relatively straightforward way, both for ideal and for aberrated imaging systems. From

this ’master’ function, by means of a partial inverse Fourier transformation with respect

to one or two of its spatial frequency variables, we obtain useful transfer functions when

imaging three-dimensional objects. As new analytic results we mention

a) the x-z transfer function evaluated as a function of the lateral off-set y′ perpendicular

to the imaged structure,

b) the classical x-y optical transfer function OTF in a plane perpendicular to the optical

axis, both in focus and for an out-of-focus plane,

c) the axial z transfer function as a function of the lateral distance from a z-modulated

line image.

In all these cases, analytic expressions were made available or semi-analytic solutions in

terms of a series expansion with an infinite number of terms that can be truncated with the

aid of a truncation rule that guarantees a desired accuracy of the result.

For aberrated imaging systems, the three-dimensional frequency transfer function is evalu-

ated using a Zernike expansion of the complex lens pupil function. A result for the line-

integral of a Zernike polynomial defined on the unit disk given by Cormack provides in-

teresting expressions for the three-dimensional transfer function and for the classical two-

dimensional OTF . In this paper we applied Cormack’s result to weakly aberrated systems;

to be able to use this result we used our radial scaling rule for Zernike polynomials. For

severely aberrated imaging systems, a more involved scheme is needed that also uses the

Zernike expansion coefficients of a shifted pupil function. This new procedure for transfer

function evaluation using scaling, shifting and general multiplication operations on Zernike

polynomials has been given in this paper; the details of these operations on Zernike polyno-

mials can be collected from the recent literature. The analytic approach to optical transfer

function calculation can replace, in many instances, the more common approach of numerical

line or surface integration. The analysis provides the user with explicit physical relation-

ships. In the case of analytic solutions a gain in calculation time is evident. For semi-analytic

solutions with good convergence to the final value this is also a valid statement.
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Appendices

Appendix A: Integral evaluation and series summation in the expression for the

axial transfer function

In this Appendix we first evaluate the integral that appears after the equal sign in Eq.(17).

The next step is the calculation of the number of terms that need to be included in the

summation of Eq.(17) to obtain a certain accuracy.

A.1. Evaluation of the integral

In compact notation we write the integral after the summation sign of Eq.(17) as

Im(w) =

∫ b+

b−

b2m−1

√
b2 −

(
b2

2
+ w

)2

db , (A.1)

with w = |ν ′z,n| < 1/2 and b± = 1±
√

1− 2w. With the substitution u = b2 we obtain after

some rearrangement

Im(w) =
1

4

∫ u+

u−

(u− u−)1/2 (u+ − u)1/2 um−1 du , (A.2)

with the integration limits given by u± = 2[(1 − w) ± (1 − 2w)1/2]. We next substitute

t = (u− u−)/(u+ − u−) ∈ [0, 1], and we get

Im(w) = 4(1− 2w)um−1−

∫ 1

0

t1/2 (1− t)1/2 (1 + a t)m−1 dt , (A.3)

with a equal to (u+ − u−)/u− . The remaining integral IB,m(w) with m = 1, 2, · · · can be

cast into a series with Beta-integrals by using a power series expansion for the polynomial

factor (1 + at)m−1 of the integrand,

IB,m(w) =
m−1∑
k=0

(
m− 1

k

)
ak
∫ 1

0

tk+1/2 (1− t)1/2 dt =
m−1∑
k=0

(
m− 1

k

)
Γ(k + 3/2) Γ(3/2)

Γ(k + 3)
ak .

(A.4)

This allows to write the final result for Im(w) with m = 1, 2, · · · , as

Im(w) = π (1− 2w)
m−1∑
k=0

2k
(
m− 1

k

)(
1

2
.
3

3
. · · · .2k + 1

k + 2

)
(1−
√

1− 2w)2m−2−2k (1− 2w)k/2 .

(A.5)

The case m = 0 in Eq.(A.3) needs a special treatment. In terms of the hypergeometric

function F , see [24], 15.2(i) and 15.6.1, we have

I0(w) =
4(1− 2w)

u−

∫ 1

0

t1/2 (1− t)1/2 (1 + at)−1 dt

=
π (1− 2w)

2u−
F (1, 3/2 ; 3 ;−a) =

π (1− 2w)

2u−

(
1

2
+

1

2

√
1 + a

)−2
, (A.6)
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where [24], 15.4.17 has been used. From a = (u+ − u−)/u− and u± = b2± = (1±
√

1− 2w)2,

we then readily get I0(w) = π (1− 2w)/2.

A.2. Truncation of the infinite series and accuracy of the partial sum

The semi-analytic expression in Eq.(17) for OTFz is obtained by inserting the power series

expansion
∞∑
m=0

(−z2/4)m/(m!)2 of the Bessel function J0(z). From the sharp form m! ≈

e−mmm
√

2πm of Stirling’s formula, see [24], 5.11.1, it is seen that the terms in the series

have modulus of the order (e|z|/2m)2m/2πm. Thus, the maximum modulus of the terms,

occurring for m ≈ |z|/2, is of the order exp(|z|)/(π|z|), and there is rapid decay of the terms

below 1 for m ≥ e|z|/2. In the integral in Eq.(16), the worst case |z| = 2πr′nν
′
t,n equals 4πr′n

(when ν ′z,n = 0). For example, when computing with absolute accuracy 10−15, one has that

in worst case J0 is approximated with absolute accuracy 10−5 when r′n ≤ 2 and when all

terms in the power series with m ≤ 2πer′n + 5 = M are included.

Appendix B.0: Evaluation of the integral in Eq.(19)

Assume 0 < w ≤ 1/2. In the integral

Im(s, w) =

∫
1

s2 + v2

√
s2 + v2 −

(
s2 + v2

2
+ w

)2

v2m dv , (B.1)

we carry out the substitution u = s2 + v2 to obtain

Im(s, w) =
1

2

∫
1

u

√
u−

(u
2

+ w
)2 (

u− s2
)m−1/2

du , (B.2)

with integration over all u ≥ s2 such that the square-root expression is non-negative. With

u± = 2[1− w ±
√

1− 2w], as in Appendix A, this is the case when u− ≤ u ≤ u+. Thus, we

consider three cases,

a) 0 < s ≤ 1−
√

1− 2w : u− ≤ u ≤ u+ ,

b) 1−
√

1− 2w < s < 1 +
√

1− 2w : u = s2 < u < u+ ,

c) s ≥ 1 +
√

1− 2w : empty u-set

(B.3)

for the integration range in the integral in Eq.(B.2).

For the case in Eq.(B.3)a we substitute q = [u− (u+ + u−)/2] / [(u+− u−)/2] ∈ [-1,+1], and

we get

Im(s, w) = 2m−3/2(1− 2w)

+1∫
−1

{
q
√

1− 2w + 1− w − s2/2
}m−1/2

q
√

1− 2w + 1− w
√

1− q2 dq . (B.4)
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We put

c = 1− w − s2/2 , A =

√
1− 2w

1− w
, B =

√
1− 2w

1− w − s2/2
, (B.5)

and obtain

Im(s, w) = 2m−3/2
(

1− 2w

1− w

)
cm−1/2

+1∫
−1

(1 + Aq)−1 (1 +Bq)m−1/2
√

1− q2 dq . (B.6)

From 0 < s ≤ 1 −
√

1− 2w and 0 < w ≤ 1/2, we have that 0 ≤ A < B ≤ 1. To evaluate

the remaining integral in Eq.(B.6), one approach is to develop (1 + Aq)−1 (1 + Bq)m−1/2

=
∑∞

j=0 djq
j into a power series converging for |q| < 1, and then to evaluate the integrals∫ +1

−1 q
j
√

1− q2 dq that show up in terms of Γ-functions. Alternatively, this integral can

be expressed in terms of the Appell function F1, see [24], 16.13-15, by the substitution

t = (1− q)/2 ∈ [0, 1], so that

Im,a =

∫ +1

−1
(1 + Aq)−1 (1 +Bq)m−1/2 (1− q)1/2 (1 + q)1/2 dq

= 4(1 + A)−1(1 +B)m−1/2
∫ 1

0

t1/2 (1− t)1/2
(

1− 2At

1 + A

)−1 (
1− 2Bt

1 +B

)m−1/2
dt

=
π

2
(1 + A)−1(1 +B)m−1/2 F1

(
3/2 ; 1 ,−m+ 1/2 ; 3 ;

2A

1 + A
,

2B

1 +B

)
. (B.7)

Then using the series expansion [24], 16.13.1 of F1, we get

Im,a =
π

2
(1 + A)−1(1 +B)m−1/2

∞∑
k,l=0

(3/2)k+l
(3)k+l

(−m+ 1/2)l
l !

(
2A

1 + A

)k (
2B

1 +B

)l
, (B.8)

where we have used Pochhammer symbols, (a)0 = 1 and (a)j = a(a + 1) · · · (a + j − 1) for

j = 1, 2, · · · and real a.

In the case of Eq.(B.3)b, we have that |B| > 1, and we must argue somewhat differently.

We now have

Im(s, w) =
1

2

u+∫
u

1

u

√
(u−

(u
2

+ w
)2

(u− u)m−1/2 du

=
1

4

u+∫
u

1

u

√
u− u− (u− u)m−1/2 (u+ − u)1/2du , (B.9)

where we have used that u− (u/2 + w)2 = (u− u−)(u+ − u)/4. With

d = (u+ − u)/2 , u0 = (u+ u+)/2 , (B.10)
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we substitute q = (u− u0)/d ∈ [-1,+1], and we get

Im(s, w) =
dm+1

4u0
(u0 − u−)1/2

1∫
−1

(1 + Cq)−1 (1 +Dq)1/2 (1 + q)m−1/2(1− q)1/2 dq. (B.11)

Here,

C =
d

u0
, D =

d

u0 − u−
, (B.12)

for which we have 0 < C < D < 1 by the assumption u− < u < u+ and the definition

of d and u0 in Eq.(B.10). We can now proceed as we did for the integral in Eq.(B.6) by

developing (1 + Cq)−1 (1 + Dq)1/2 as a power series
∑∞

j=0 ejq
j converging for |q| < 1. The

remaining integrals
∫ +1

−1 q
j (1 + q)m−1/2 (1 − q)1/2 dq are now somewhat more awkward, but

can still be evaluated in finite terms using Γ-functions. Alternatively, we can again express

the remaining integral in Eq.(B.11) in terms of the Appell function F1 and we get

Im,b =

∫ +1

−1
(1 + Cq)−1 (1 +Dq)1/2 (1 + q)m−1/2 (1− q)1/2 dq

=
2m (1/2)m π

(m+ 1) !
(1 + C)−1(1 +D)1/2 F1

(
3/2 ; 1 ,−1/2 ;m+ 2 ;

2C

1 + C
,

2D

1 +D

)
=

2m (1/2)m π

(m+ 1) !
(1 + C)−1(1 +D)1/2

∞∑
k,l=0

(3/2)k+l
(m+ 2)k+l

(−1/2)l
l !

(
2C

1 + C

)k (
2D

1 +D

)l
.

(B.13)

The semi-analytic approach to evaluate the integrals in Eqs.(B.6),(B.11) by power series

expansions of (1 + Aq)−1(1 + Bq)m−1/2 or (1 + Cq)−1(1 + Dq)1/2 yields a slightly faster

converging series than the series in Eqs.(B.8),(B.13) that are based on the analytic result

involving Appell functions. To produce Fig. 7, we used the power-series approach to evaluate

the integrals in Eq.(19) and compared that with numerical integration of the integral in

Eq.(18) using the trapezoidal rule. For small values of w, say w ≤ 0.1, the numbers A and

B (or C and D) are very close to 1, so that the power series converge slowly, and then the

numerical method is to be preferred over the power series method.
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contraste des images optiques,” C. R. Acad. Sci. 237, nr. 12, 607-609 (1953).

6. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lon. Ser.-A

217, 408-432 (1953).

7. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc.

Lon. Ser.-A 231, 91-103 (1955).

8. H. H. Hopkins, “The application of frequency response techniques in optics,” Proc.

Phys. Soc. Lon. B 79, 889-919 (1962).

9. M. Born and E. Wolf, Principles of optics, electromagnetic theory of propagation, in-

terference and diffraction of light, Cambridge University Press, Cambridge (UK), 7th

edition (1999).

10. G. Black and E. H. Linfoot, “Spherical aberration and the information content of

optical images,” Proc. R. Soc. Lon. Ser.-A 239, 522 (1957).

11. A. M. Goodbody, “The influence of spherical aberration on the response function of

an optical system,” Proc. Phys. Soc. Lon. B 72, 411 (1958).

12. A. M. Goodbody, “The influence of coma on the response function of an optical sys-

tem,” Proc. Phys. Soc. Lon. B 75, 677-688 (1960).

13. M. De, “The influence of astigmatism on the response function of an optical system,”

Proc. R. Soc. Lon. Ser.-A 233, 91-104 (1955).

14. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121-

127 (1985).

15. C. J. R. Sheppard and X. Q. Mao, “Three-dimensional imaging in a microscope,” J.

Opt. Soc. Am. A 6, 1260-1269 (1989).

16. M. Gu and C. J. R. Sheppard, “Three-dimensional imaging in confocal fluorescent

microscopy with annular lenses,” J, Mod. Opt. 38, 2247-2263 (1991).

17. D. G. A. Jackson, M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer

function for circular and annular lenses with spherical aberration and defocus,” J. Opt.

29



Soc. Am. A 11, 1758-1767 (1994).

18. M. Gu, Advanced optical imaging theory, Springer-Verlag, Berlin (2000).

19. C. J. R. Sheppard, M. Gu, Y. Kawata and S. Kawata, “Three-dimensional transfer

functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593-598 (1994).

20. J. Philip, “Optical transfer function in three dimensions for a large numerical aperture,”

J. Mod. Opt. 46, 1031-1042 (1999).

21. M. R. Arnison and C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable

for arbitrary pupil functions,” Opt. Commun. 211, 53-63 (2002).

22. A. Schoenle and S. W. Hell, “Calculation of vectorial three-dimensional transfer func-

tions in large-angle focusing systems,” J. Opt. Soc. Am. A 19, 2121-2126 (2002).

23. P. A. Stokseth, “Properties of a defocused optical system,” J. Opt. Soc. Am. 59,

1314-1321 (1969).

24. F. W. J Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, Handbook of Mathematical

Functions (Cambridge university Press, 2010).

25. C. J. R. Sheppard and M. Hole, “Three-dimensional optical transfer function for weak

aberrations,” J. Mod. Opt. 42, 1921-1928 (1995).

26. A. M. Cormack, “Representation of a function by its line integrals, with some radio-

logical applications,” J. Appl. Phys. 34, 2722-2727 (1963).

27. A. M. Cormack, “Representation of a function by its line integrals, with some radio-

logical applications. II,” J. Appl. Phys. 35, 2908-2913 (1964).

28. S. R. Deans, The Radon transform and some of its applications, Wiley & Sons, New

York (1983).

29. A. J. E. M. Janssen and P. Dirksen, “Computing Zernike polynomials of arbitrary

degree using the discrete Fourier transform,” J. Eur. Opt. Soc. Rapid 2, 07012 (2007).

30. A. J. E. M. Janssen and P. Dirksen, “Concise formula for the Zernike coefficients of

scaled pupils,” J. Microlith. Microfab. Microsyst. 5(3), 030501 (2006).

31. A. J. E. M. Janssen, ”New analytic results for the Zernike circle polynomials from a

basic result in the Nijboer-Zernike diffraction theory,” J. Eur. Opt. Soc. Rapid 6, 11028

(2011).

32. W. J. Tango, The circle polynomials of Zernike and their application in optics, Appl.

Phys. 13, 327332 (1977).

33. S. van Haver and A. J. E. M. Janssen, ”Advanced analytic treatment and efficient

30



computation of the diffraction integrals in the extended Nijboer-Zernike theory,” J.

Eur. Opt. Soc. Rapid 8, 13044 (2013).

31


