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Abstract

The Quality-and-Efficiency-Driven (QED) regime provides a basis for
solving asymptotic dimensioning problems that trade off revenue, costs
and service quality. We derive bounds for the optimality gaps that capture
the differences between the true optimum and the asymptotic optimum
based on the QED approximations. Our bounds generalize earlier results
for classical many-server systems. We also apply our bounds to a many-
server system with threshold control.
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1 Introduction

The theory of square-root staffing in many-server systems ranks among the most
celebrated principles in applied probability. The general idea behind square-root
staffing is as follows: a finite server system is modeled as a system in heavy traffic,
where the number of servers s is large, whereas at the same time, the system
is critically loaded. Under Markovian assumptions, and denoting the load on
the system by λ, this can be achieved by setting s = λ + β

√
λ and letting

λ → ∞ while keeping β > 0 fixed, or alternatively setting λ = s − γ
√
s and

letting s → ∞ while keeping γ > 0 fixed. In both cases, the system reaches the
desirable Quality-and-Efficiency-Driven (QED) regime.
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The QED regime refers to mathematically defined conditions in which both
customers and system operators benefit from the advantages that come with
systems that operate efficiently at large scale, which is particularly relevant
for systems in e.g. health care, cloud computing, and customer services. Such
conditions manifest themselves in a low delay probability and negligible mean
delay, despite the fact that the system utilization is high. Properties of this sort
can be proven rigorously for systems such as the M/M/s queue by establishing
stochastic-process limits under the aforementioned QED scalings [2]. The QED
regime also creates a natural environment for solving dimensioning problems
that achieve an acceptable trade-off between service quality and capacity. Qual-
ity is usually formulated in terms of some target service level. Take for instance
the probability that an arriving customer experiences delay. The target could
be to keep the delay probability below some value ǫ ∈ (0, 1). The smaller ǫ,
the better the offered quality of service. Once the target service level is set, the
objective from the operator’s perspective is to determine the highest load λ such
that the target ǫ is still met.

For the M/M/s queue, it was shown by Borst et al. [1] that such dimension-
ing procedures combined with QED approximations have certain asymptotic
optimality properties. To illustrate this, consider the case of linear costs, i.e.
waiting cost are b per customer per unit time, and staffing cost are c per server
per unit time. Denoting the total cost by Kλ(s), it can be shown that when
s = λ+ β

√
λ and β > 0,

Kλ(s) = bλ
Cλ(s)

s− λ
+ cs = cλ+

√
λ
(

cβ +
b

β
Cλ(s)

)

(1)

with Cλ(s) the delay probability in the M/M/s queue. The first term cλ rep-
resents the cost of the minimally required capacity λ, while the second term
gathers the cost factors that are all O(

√
λ). Halfin and Whitt [2] showed that in

the QED regime Cλ(s) converges to a nondegenerate limit C0(β) ∈ (0, 1), so that
in the QED regime one only needs to determine β0 = argminβ{cβ+ bC0(β)/β},
and then set s0 = [λ + β0

√
λ] as an approximation for the optimal number of

servers sopt = argmins{Kλ(s)}. Borst et al. [1] called this procedure asymptotic
dimensioning.

Based on the QED limiting regime, one expects that such approximate so-
lutions are accurate for large relative loads λ. For the optimality gaps |s0− sopt|
and |Kλ(s0)−Kλ(s

opt)|, i.e. inaccuracies that arise from the fact that the actual
system is of finite size, Borst et al. [1] showed through numerical experiments
that the approximation s0 performs exceptionally well in almost all circum-
stances, even when systems are only moderately sized. A rigorous underpinning
for these observations was provided by Janssen et al. [5], who used refined QED
approximations to quantify the optimality gaps. The delay probability, for in-
stance, was shown to behave as C0(β) + C1(β)/

√
λ + O(λ−1), which in turn

was used to estimate the optimality gaps for the dimensioning problem in (1).
Zhang et al. [8] obtained similar results for optimality gaps in the context of the
M/M/s+M queue, in which customers may abandon before receiving service.
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Motivated by the results in [5, 8], Randhawa [6] took a more abstract ap-
proach to quantify optimality gaps of asymptotic dimensioning problems. He
showed under general assumptions that when the approximation to the objec-
tive function is accurate up to O(1), the prescriptions that are derived from this
approximation are o(1)-optimal. The optimality gap thus becomes zero asymp-
totically. This general setup was shown in [6] to apply to the M/M/s queues in
the QED regime, which confirmed and sharpened the results on the optimality
gaps in [5, 8] by implying that |Kλ(s0)−Kλ(s

opt)| = o(1). The abstract frame-
work in [6], however, can only be applied if refined approximations as in [5, 8]
are available.

Such refined approximations were recently developed in [4, 7] for a broad
class of many-server systems operating in the QED regime with λ = s − γ

√
s,

and equipped with an admission control policy and a revenue structure. For
a wide range of performance metrics, Ms(γ) say, these refinements are of the
form Ms(γ) = M0(γ) + M1(γ)/

√
s + · · · . The method in [4, 7] can deliver as

many higher-order terms as needed, and generate all the refinements obtained
in [5, 8, 6].

In the present paper, we demonstrate how the results in [4, 7] can be lever-
aged to determine the optimality gaps of novel asymptotic dimensioning prob-
lems for a large class of many-server systems. Our main result (Theorem 1) pro-
vides generic bounds for the optimality gaps that become sharper when more
terms in the QED expansion for Ms(γ) are included.

2 Model description

2.1 Service systems with admission control and revenues

We consider many-server systems with s parallel servers, to which customers
arrive according to a Poisson process with rate λ. Every customer requires an
exponentially distributed service time with mean one. If a customer arrives and
finds k−s ≥ 0 customers waiting, the customer is allowed to join the queue with
probability ps(k − s) and is rejected with probability 1 − ps(k − s). The total
number of customers in the system evolves as a birth–death process {Xs(t)}t≥0
and has a stationary distribution

πs(k) =











Z−1, k = 0,

Z−1 (sρ)k

k! , k = 1, 2, . . . , s,

Z−1 ssρk

s!

∏k−s−1
i=0 ps(i), k = s+ 1, s+ 2, . . . ,

(2)

where ρ = λ/s, Z =
∑s

k=0(sρ)
k/k! + ((sρ)s/s!)Fs(ρ), and Fs(ρ) =

∑∞
n=0 ps(0) ·

. . . ·ps(n)ρn+1. The stationary distribution in (2) exists if and only if the relative
load ρ and the admission control policy {ps(k)}k∈N0

are such that Fs(ρ) < ∞.
Next, we assume that the system generates revenue at rate rs(k) ∈ R when

there are k customers in the system. The sequence {rs(k)}k∈N0
will be called the

revenue structure. The stationary rate at which the system generates revenue is
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then given by

Rs(γ) =

∞
∑

k=0

rs(k)πs(k), (3)

which depends via the equilibrium distribution on the admission control policy.
Ref. [7] discusses the problem of maximizing the revenue rate over the set of all
admission control policies.

One advantage of considering general admission control policies and rev-
enue structures is that one can study different service systems and steady-
state performance measures through one unifying framework. For example, the
equilibrium behavior of the canonical M/M/s/s, M/M/s, and M/M/s + M
systems can be recovered by choosing ps(k − s) = 0, ps(k − s) = 1, and
ps(k − s) = 1/(1 + (k − s + 1)θ/s), respectively. Here, θ corresponds to the
rate at which waiting customers abandon from the M/M/s+M system. Sim-
ilarly, the delay probability Ds(γ) =

∑∞
k=s πs(k) can be recovered by setting

rs(k) = 1[k ≥ s], the mean queue length Qs(γ) =
∑∞

k=s(k−s)πs(k) is recovered
when considering rs(k) = (k−s)1[k ≥ s], and the average number of idle servers

Is(γ) =
∑s−1

k=0(s− k)πs(k) follows from rs(k) = (s− k)1[k < s].
As a primary example we will consider a scenario where besides the waiting

cost b > 0 incurred per customer per unit time, a fee a > 0 is received for every
served customer, and a penalty d ≥ 0 is imposed for rejecting a customer. The
latter cost accounts for the degree of revenue loss from the admission control
policy. Denoting by DR

s (γ) =
∑∞

k=s(1− ps(k− s))πs(k) the probability that an
arriving customer is rejected, and by Ws(γ) =

∑∞
k=s((k−s+1)/s)ps(k−s)πs(k)

the expected waiting time of an arriving customer, the total system revenue rate
is given by

Rs(γ) = aλ(1 −DR
s (γ))− bλWs(γ)− dλDR

s (γ). (4)

By virtue of Little’s law λWs(γ) = Qs(γ) and λ(1 − DR
s (γ)) = s − Is(γ), and

since λ = s− γ
√
s, the revenue rate can equivalently be expressed as

Rs(γ) = as+ dγ
√
s− (a+ d)Is(γ)− bQs(γ). (5)

This scenario therefore corresponds to the revenue structure

rs(k) =

{

ak + dγ
√
s− d(s− k) k < s,

as+ dγ
√
s− b(k − s), k ≥ s.

(6)

2.2 QED scaling and refinements

We now discuss how to apply the QED scaling to obtain an asymptotic expan-
sion for Rs(γ) for general revenue structures {rs(k)}k∈N0

, which we will exploit
in §3 to characterize the asymptotic optimality gap. We impose the following
three conditions throughout this paper:

(i) The arrival rate and system size are coupled via the scaling λ = s− γ
√
s;
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(ii) ps(0) · . . . · ps(n) → f((n + 1)/
√
s) where f(x) is either a continuous,

nonincreasing function, or f(x) = 1[x ≤ η];

(iii) There exist sequences {ns}s∈N+
, {qs}s∈N+

with qs > 0, and a continuous
function r(x) that satisfy the scaling condition (rs(k) − ns)/qs → r((k −
s)/

√
s).

It is proven in [4, 7] that lims→∞(Rs(γ)− ns)/qs = R0(γ) under conditions
(i)–(iii), with

R0(γ) =

∫ 0

−∞ r(x)e−
1
2
x2−γx dx+

∫∞
0 r(x)f(x)e−γx dx

Φ(γ)
φ(γ) +

∫∞
0

f(x)e−γx dx
. (7)

Here, Φ and φ denote the cumulative distribution function and probability den-
sity function of the standard normal distribution. This asymptotic characteriza-
tion of the revenue is leveraged in [7] to prove that for many revenue structures
there exists an optimal admission control policy with a threshold structure.

Moreover, the method used to obtain (7) in [4, 7] can be extended to derive
an asymptotic expansion of the form

Rs(γ) = ns + qs

(

j
∑

i=0

Ri(γ)

si/2
+O

( 1

s(j+1)/2

))

, (8)

which is shown in A. We also provide closed-form expressions for the first two
terms R0(γ) and R1(γ) for arbitrary f(x) and r(x). The asymptotic expansion
in (8) is a crucial ingredient for determining the optimality gaps.

Let us discuss the asymptotic expansion in the context of (5). Denoting
ns = as and extracting a term qs =

√
s yields Rs(γ) = ns +

√
sR̂s(γ) with

R̂s(γ) = dγ − (a+ d)
Is(γ)√

s
− b

Qs(γ)√
s

. (9)

Since our goal is to maximize Rs(γ) over γ, and because the term ns is constant
and independent of γ, we only need to focus on the maximization of R̂s(γ).

Recall (6) and note that the limiting revenue structure for the objective
function in (9) is given by r(x) = (a+ d)x+ dγ for x < 0, and r(x) = −bx+ dγ
for x ≥ 0. With an admission control policy f(x) = 1[x ≤ η] where η ≥ 0
denotes the admission threshold, it follows from (7) that

lim
s→∞

R̂s(γ) = R̂0(γ) = dγ −
(a+ d)

(

1 + γ Φ(γ)
φ(γ)

)

+ b 1−(1+γη)e−γη

γ2

Φ(γ)
φ(γ) +

1−e−γη

γ

. (10)

We prove in A that lims→∞
√
s(R̂s(γ)− R̂0(γ)) = R̂1(γ) and provide an explicit

expression for R̂1(γ). We then have both a first-order approximation R̂0(γ) and a
second-order approximation R̂0(γ)+R̂1(γ)/

√
s for the objective function R̂s(γ).
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3 General revenue maximization

For general objective functions (3), we now aim for solving the dimensioning
problem

max
γ∈Γ

{Rs(γ)}, (11)

where we assume that Γ = [γl, γr] is a compact interval contained in (γmin
s ,∞),

with γmin
s = inf{γ ∈ R|Fs(ρ) < ∞}. Denote the exact solution by

γopt
s = argmax

γ∈Γ
{Rs(γ)}. (12)

We assume that an asymptotic expansion of the form (8) is available for
Rs(γ) and its derivative Rs

′(γ), which we can then use to approximate the
objective function. Hence we will consider

γj,s = argmax
γ∈Γ

{

R0(γ) + . . .+
Rj(γ)

sj/2

}

(13)

as approximations for the exact solution γopt
s , which should be increasingly

better for larger j and/or s. Note that γ0,s = γ0 is independent of s.
Denoting the ith derivative of a function g(x) by g(i)(x), we assume also

that R0
(k)(γ), . . . , Rj

(k)(γ) are bounded on Γ for k = 0, 1, 2, and that Rj+1
(l)(γ)

is bounded on Γ for l = 0, 1. We furthermore assume that both the first-order
optimizer γ0 and the exact optimizer γopt

s exist, are unique and lie in the interior
of Γ, and that R0(γ) is strictly concave on Γ and has a continuous derivative
R0
′′(γ) on Γ. Finally, we assume that f(x) is such that

lim
γ↓γmin

∫ ∞

0

f(x)e−γx dx = ∞, (14)

where γmin = inf{γ ∈ R|
∫∞
0

f(x)e−γx dx < ∞}. Ref. [4] discusses under which
conditions assumption (14) is satisfied, and it is satisfied for instance for any
admission control policy f(x) = 1[x ≤ η] with admission threshold η > 0, since
∫∞
0

f(x)e−γx dx = (1− e−γη)/γ and γmin = −∞.

3.1 Optimality gaps

We now derive the optimality gaps for the general optimization problem in (11).
Theorem 1 formalizes that the approximating solutions γj,s are asymptotically
optimal through bounds for the optimality gaps, and that an approximation of
order j yields a gap decay of order j+1. With minor modifications to the proof,
the result also applies to minimization problems of the form minγ∈Γ{Rs(γ)}.

Theorem 1. For j = 0, 1, . . ., there exist constants Mj and Kj independent of
s and sj ∈ N+ such that for all s ≥ sj,

|Rs(γ
opt
s )−Rs(γj,s)| ≤

qsMj

s(j+1)/2
, |γj,s − γopt

s | ≤ Kj

s(j+1)/2
. (15)

6



Proof First, we will prove a monotonicity result, as well as the existence of
optimizers.

Lemma 1. There is an s0 ∈ N+ such that for all s ≥ s0, the function R0(γ) +
∑j

i=1 Ri(γ)/s
i/2 has a unique optimizer γj,s ∈ Γ and a strictly decreasing deriva-

tive R0
′(γ) +

∑j
i=1 Ri

′(γ)/si/2.

Proof. Recall that γ0 lies in the interior of Γ and that R0
′(γ) is strictly decreas-

ing on Γ by assumption, which implies that R0
′(γl) > 0. We seek s1 ∈ N+

such that for all s ≥ s1, R0
′(γl) +

∑j
i=1 Ri

′(γl)/si/2 > 0. Note next that

(1/
√
s)

∑j
i=1 |Ri

′(γl)| ≥ −
∑j

i=1 Ri
′(γl)/si/2 for s ∈ N+. For all s ∈ N+ for

which R0
′(γl) > (1/

√
s)

∑j
i=1 |Ri

′(γl)|, we have thus consequently that R0
′(γl)

> −
∑j

i=1 Ri
′(γl)/si/2. We therefore pick s1 = ⌈(

∑j
i=1 |Ri

′(γl)|/R0
′(γl))2⌉ to

ensure that for all s ≥ s1, R0
′(γl) +

∑j
i=1 Ri

′(γl)/si/2 > 0. A similar result

holds at γ = γr, i.e. we have R0
′(γr) < 0, and thus s2 = ⌈(∑j

i=1 |Ri
′(γr)|/

R0
′(γr))2⌉ is such that for all s ≥ s2, R0

′(γr) +
∑j

i=1 Ri
′(γr)/si/2 < 0. The

function R0(γ) +
∑j

i=1 Ri(γ)/s
i/2 thus has a unique optimizer γj,s ∈ Γ.

Finally we turn to proving the monotonicity property ofR0
′(γ)+

∑j
i=1 Ri

′(γ)/
si/2. By assumption, R0

′′(γ) < 0 for all γ ∈ [γl, γr]. Similar to before, set s3 =

maxγ∈[γl,γr]⌈(
∑j

i=1 |Ri
′′(γ)|/R0

′′(γ))2⌉, and conclude thatR0
′′(γ)+

∑j
i=1 Ri

′′(γ)/

si/2 < 0 for all s ≥ s3 and all γ ∈ [γl, γr]. Finish the proof by setting s0 =
max{s1, s2, s3}, and by noting that s0 is bounded.

Recall that the unique optimizer γopt
s exists, and lies in the interior of Γ.

Because γopt
s maximizes Rs(γ), we have therefore by suboptimality that

0 ≤ Rs(γ
opt
s )−Rs(γj,s) =

[

qs

j
∑

i=0

Ri(γj,s)

si/2
−Rs(γj,s)

]

(16)

−
[

qs

j
∑

i=0

Ri(γ
opt
s )

si/2
−Rs(γ

opt
s )

]

+ qs

[

j
∑

i=0

Ri(γ
opt
s )

si/2
−

j
∑

i=0

Ri(γj,s)

si/2

]

,

and subsequently by expansion (8) that

0 ≤ Rs(γ
opt
s )−Rs(γj,s) = qs

[

j
∑

i=0

Ri(γ
opt
s )

si/2
−

j
∑

i=0

Ri(γj,s)

si/2

]

+ qs
Rj+1(γ

opt
s )−Rj+1(γj,s)

s(j+1)/2
+O

( qs
s(j+2)/2

)

. (17)

Since γj,s maximizes
∑j

i=0 Ri(γ)/s
i/2, we have by suboptimality that the term

within square brackets is negative, i.e.

j
∑

i=0

Ri(γ
opt
s )

si/2
−

j
∑

i=0

Ri(γj,s)

si/2
≤ 0 (18)
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for all s ∈ N0. Therefore, since qs > 0,

0 ≤ Rs(γ
opt
s )−Rs(γj,s) ≤ qs

Rj+1(γ
opt
s )−Rj+1(γj,s)

s(j+1)/2
+O

( qs
s(j+2)/2

)

. (19)

Since Rj+1(γ) is bounded on Γ by assumption, the first claim in (15) follows.

Corollary 1. There exist constants Mj
′ > 0 independent of s and sj

′ ∈ N+

such that for all s ≥ sj
′,

∣

∣

∣

j
∑

i=0

Ri
′(γopt

s )

si/2
−

j
∑

i=0

Ri
′(γj,s)

si/2

∣

∣

∣
=

∣

∣

∣

j
∑

i=0

Ri
′(γopt

s )

si/2

∣

∣

∣
≤ Mj

′

s(j+1)/2
. (20)

Proof. Note that γj,s is the optimizer of
∑j

i=0 Ri(γ)/s
i/2, and that therefore

∑j
i=0 Ri

′(γj,s)/si/2 = 0, which proves the leftmost equality.
Next, we examine the asymptotic expansion of the derivative of Rs(γ), which

we have assumed is available and of the form (8). It follows that

qs

j
∑

i=0

Ri
′(γopt

s )

si/2
= R′s(γ

opt
s )− qs

Rj+1
′(γopt

s )

s(j+1)/2
+O

( qs
s(j+2)/2

)

(i)
= −qs

Rj+1
′(γopt

s )

s(j+1)/2
+O

( qs
s(j+2)/2

)

, (21)

since (i) γopt
s optimizes Rs(γ). Now (20) follows since Rj+1

′(γ) is bounded on
Γ.

We are now ready to establish the second claim in (15). Recall that for

all j ∈ N+, and sufficiently large s, the function
∑j

i=0 Ri
′(γ)/s(i/2) is strictly

decreasing in [γl, γr], see Lemma 1. Note also that γ0, γ
opt
s , γj,s ∈ [γl, γr]. The

mean value theorem implies then that

∣

∣

∣

j
∑

i=0

Ri
′(γopt

s )

s(i/2)
−

j
∑

i=0

Ri
′(γj,s)

s(i/2)

∣

∣

∣
≥ mj,s|γopt

s − γj,s| (22)

with

mj,s = − max
γ∈[γl,γr]

{

R0
′′(γ) +

j
∑

i=1

Ri
′′(γ)

si/2

}

, (23)

where we have also used that the function
∑j

i=0 Ri(γ)/s
(i/2) is optimized by

γj,s. Combining with Corollary 1, it follows that

Mj
′

s(j+1)/2
≥

∣

∣

∣

j
∑

i=0

Ri
′(γopt

s )

si/2
−

j
∑

i=0

Ri
′(γj,s)

si/2

∣

∣

∣
≥ mj,s|γopt

s − γj,s|, (24)

which is almost the second claim in (15). What remains is to remove the depen-
dency on s of mj,s.
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To that end, remark that maxγ∈[γl,γr] R0
′′(γ) < 0 by continuity and point-

wise negativity of R0
′′(γ). Then, bound

mj,s = min
γ∈[γl,γr]

{

−R0
′′(γ)−

j
∑

i=1

Ri
′′(γ)

si/2

}

≥ min
γ∈[γl,γr]

{−R0
′′(γ)} + 1√

s
min

γ∈[γl,γr ]

{

−
j

∑

i=1

Ri
′′(γ)

s(i−1)/2

}

(25)

≥ min
γ∈[γl,γr]

{−R0
′′(γ)} − 1

√

sj ′
max

γ∈[γl,γr]

{

j
∑

i=1

Ri
′′(γ)

(sj ′)(i−1)/2

}

=: mj ,

and increase the value of sj
′ if necessary to ensure that mj > 0.

Summarizing, we now have that Mj
′/s(j+1)/2 ≥ mj |γopt

s −γj,s| for all s ≥ sj
′.

Setting Kj = Mj
′/mj completes the proof. �

3.2 Dimensioning under a delay constraint

The approach of §3.1 can also be used to solve delay constrained dimensioning
problems. As an example, consider finding

γopt
s = argγ∈Γ{Ds(γ) = ǫ}, (26)

where ǫ ∈ (0, 1). Since we have an asymptotic expansion of the form (8) for
the delay probability, see A, instead of solving for γopt

s directly we can obtain

approximations γj,s = argγ∈Γj
{
∑j

i=0 Di(γ)/s
i/2 = ε}. The optimality gaps can

be calculated using a similar proof technique.

Corollary 2. For j = 0, 1, . . . there exist finite constants Mj, Kj > 0 indepen-
dent of s and sj ∈ N+ such that for all s ≥ sj,

|Ds(γj,s)− ε| ≤ Mj

s(j+1)/2
, |γj,s − γopt

s | ≤ Kj

s(j+1)/2
. (27)

4 Approaches to asymptotic dimensioning

4.1 Asymptotic revenue maximization with a threshold

We will now consider new approaches to asymptotic dimensioning in the context
of optimizing the objective function (4). We start with considering the revenue
maximization problem described in §2.1 while assuming that the threshold is
fixed. This concretely requires us to maximize R̂0(γ) in (9) over γ given a fixed
η < ∞.

The accuracy of our asymptotic expansion as an approximation to the ob-
jective function R̂s(γ) is examined in Figure 1, which shows the function R̂s(γ)
with its first- and second-order approximations for a system of size s = 10.

9



We conclude that both approximations are remarkably accurate for this rela-
tively small system. Near the optimizer γopt

s , the second-order approximation
is almost indistinguishable from the objective function. The maximizer of the
second-order approximation R̂0(γ)+R̂1(γ)/

√
s is also closer to the maximizer of

R̂s(γ) than the maximizer of the first-order approximation R̂0(γ) is. This illus-
trates that including higher-order correction terms in the asymptotic expansion
indeed reduces the optimality gap.

−2 −1 0 1 2 3
−1.5

−1

−0.5

0

R̂0(γ)

R̂s(γ)

R̂0(γ) +
R̂1(γ)√

s

γ

Figure 1: The function R̂s(γ) as function of γ for a = 0.1, b = 1, and η = 2, for
a system of size s = 10 with its first-order approximation R̂0(γ) (dashed curve)
and its second-order approximation R̂0(γ) + R̂1(γ)/

√
s (dotted curve).

The absolute error |R̂s(γ) − R̂0(γ) − R̂1(γ)/
√
s| is plotted in Figure 2 as

function of s for γ = 2. A fit is provided which confirms that the asymptotic
expansion is indeed accurate up to O(1/s), as suggested by the asymptotic
expansion in (8). The jumps in the data points are caused by rounding in the
admission control, since ps(k − s) = 1[k − s ≤ ⌊η√s⌋].

We also examine optimality gaps in Figure 2, which shows first- and second-
order optimality gaps. Again notice that jumps occur because of the rounding
in the control policy. Furthermore, we have provided fits that confirm that the
optimality gap is of order O(1/

√
s) when the asymptotic approximation is of

order O(1), and that the optimality is of order O(1/s) when the asymptotic
approximation is of order O(1/

√
s).

4.2 Joint dimensioning and admission control

We now introduce joint dimensioning and admission control, which has not been
studied in the QED literature. In [7], it is proven that the admission control
policy that maximizes the system’s revenue rate has a threshold structure, and
that for fixed γ < ∞ there exists an optimal threshold level ηopt. In §4.1, we
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Figure 2: (left) The absolute error |R̂s(γ) − R̂0(γ) − R̂1(γ)/
√
s| as function of

s for a = 0.1, b = 1, and η = 2, for a critically scaled system with γ = 2.
Plotted also is the curve e(s) = c1 + c2/s

c3 with fit parameters c1 = 4.0 · 10−5,
c2 = 7.2 · 10−2, and c3 = 1.1 (continuous). (right) The top data points give the
optimality gap |γ0 − γopt

s |, and the bottom data points |γ1,s − γopt
s |. The top fit

is for e(s) = c1 + c2/
√
s with c1 = 2.3 · 10−4 and c2 = 4.9 · 10−1, the bottom

e(s) = c1 + c2/s with c1 = −1.0 · 10−5 and c2 = 1.3 · 10−3.
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fixed η < ∞ and searched for γopt. Now consider their joint optimization, that
is to find

(γopt, ηopt) = arg max
γ∈R, η≥0

{R̂0(γ, η)}. (28)

We now illustrate numerically that joint dimensioning and admission control
provides important improvements compared to optimizing over γ only as in §4.1.
Table 1 displays solution pairs (γopt, ηopt) to the maximization problem in (28)
for various ratios r1 = a/(a+ d) and r2 = (a+ d)/b. Note that these two ratios
are sufficient to describe all possible optimization problems, i.e. that occur for
different a, b, and d, which can for example be seen by dividing the objective
function in (10) by d and then noting that (a + d)/d = r2/(r2 − r1r2) and
b/d = 1/(r2 − r1r2). From Table 1, we see that the optimization problem is
well-posed, since nondegenerate optimal pairs exist.

Table 2 contains the percentage improvements that can be achieved by solv-
ing the joint dimensioning and admission control problem, compared to the
classical approach of finding γopt

∞ = argmaxγ≥0 R̂s(γ, η = ∞). We should note
that this concerns the maximization of the second-order term in (4), the lead-
ing order cannot be influenced through optimization. Note also that γopt can
become negative.

4.3 Refined dimensioning

The QED refinements can also be used to derive refined dimensioning levels.
The idea is that a higher-order asymptotic solution γ1,s can be expressed as
a function of the lower-order asymptotic solution γ0. To see this, consider the
following representation of γ1,s in the context of dimensioning under a delay
constraint as discussed in §3.2.

Theorem 2. For sufficiently large s, the first-order solution is given as γ1,s =
γ0 + γ̄0, where

γ̄0 =

∞
∑

n=1

(−1)n

(n− 1)!

( d

dγ

)n−1[
(A′(γ) + E′(γ))

( γ

A(γ)

)n+1

(E(γ))n
]

γ=0
, (29)

and for small γ the auxiliary functions are defined as A(γ) = D0(γ+D←0 (ε))−ε,
and E(γ) = D1(γ +D←0 (ε))/

√
s.

Proof. We mimick the standard proof of Lagrange’s inversion theorem. Both A
and E are analytic in the neighborhood of γ = 0 by analyticity of Bs(γ) around
γ = 0 and analyticity of F1(γ) in Re{γ} > γmin, with γmin < 0 by assumption.
Also, A(0) = 0, A′(0) 6= 0.

By taking s sufficiently large, say s ≥ s0, we can arrange that there is an
r > 0 such that A′(0) + G′(0) 6= 0 and |E(γ)/A(γ) ≤ 1/2 for |γ| = r and
s ≥ s0, while γ = 0 is the only zero of F (γ) in |γ| ≤ r. By Rouché’s theorem,
for any s ≥ s0 there is a unique γ̄0 in |γ| ≤ r such that A(γ̄0) + E(γ̄0) = 0.
Thus the solution γ1,s near γ0 of the equation D0(γ)+D1(γ)/

√
s = ε is given as

12



Table 1: The optimal threshold, hedge pair (γopt, ηopt) for different ratios of a/(a+ d) and (a+ d)/b.

a/(a + d) (a + d)/b
1/5 1/4 1/3 1/2 1 2 3 4 5

0.1 (1.9, 0.4) (1.9, 0.5) (1.9, 0.6) (1.8, 0.9) (1.6, 1.6) (1.4, 2.9) (1.2, 3.9) (1.1, 4.7) (1.1, 5.5)
0.2 (1.5, 0.3) (1.5, 0.4) (1.5, 0.5) (1.4, 0.7) (1.3, 1.3) (1.1, 2.3) (1.0, 3.1) (0.9, 3.8) (0.8, 4.4)
0.3 (1.2, 0.3) (1.2, 0.3) (1.1, 0.4) (1.1, 0.6) (1.0, 1.1) (0.8, 2.0) (0.7, 2.6) (0.7, 3.2) (0.6, 3.7)
0.4 (0.9, 0.2) (0.8, 0.3) (0.8, 0.4) (0.8, 0.5) (0.7, 1.0) (0.6, 1.7) (0.6, 2.3) (0.5, 2.8) (0.5, 3.2)
0.5 (0.5, 0.2) (0.5, 0.2) (0.5, 0.3) (0.5, 0.5) (0.5, 0.8) (0.4, 1.5) (0.4, 2.0) (0.3, 2.4) (0.3, 2.8)
0.6 (0.2, 0.2) (0.2, 0.2) (0.2, 0.3) (0.2, 0.4) (0.2, 0.7) (0.2, 1.2) (0.2, 1.7) (0.1, 2.0) (0.1, 2.4)
0.7 (-0.3, 0.1) (-0.3, 0.2) (-0.3, 0.2) (-0.2, 0.3) (-0.2, 0.6) (-0.2, 1.0) (-0.1, 1.4) (-0.1, 1.7) (-0.1, 2.0)
0.8 (-0.9, 0.1) (-0.9, 0.1) (-0.9, 0.2) (-0.8, 0.2) (-0.7, 0.4) (-0.6, 0.8) (-0.5, 1.1) (-0.5, 1.3) (-0.5, 1.6)
0.9 (-2.1, 0.1) (-2.1, 0.1) (-2.1, 0.1) (-2.0, 0.2) (-1.8, 0.3) (-1.5, 0.5) (-1.4, 0.7) (-1.3, 0.9) (-1.2, 1.0)

Table 2: Pairs (γopt/γopt
∞ , 100 · (Ropt −Ropt

∞ )/|Ropt
∞ |) for ratios a/(a+ d) and (a+ d)/b.

a/(a + d) (a + d)/b
1/5 1/4 1/3 1/2 1 2 3 4 5

0.1 (0.9, 7) (0.9, 6) (0.9, 5) (0.9, 3) (1.0, 1) (1.0, 0) (1.0, 0) (1.0, 0) (1.0, 0)
0.2 (0.8, 13) (0.8, 11) (0.8, 9) (0.8, 7) (0.9, 4) (0.9, 2) (0.9, 1) (1.0, 1) (1.0, 1)
0.3 (0.6, 18) (0.7, 16) (0.7, 14) (0.7, 11) (0.8, 7) (0.8, 4) (0.9, 3) (0.9, 3) (0.9, 2)
0.4 (0.5, 23) (0.5, 22) (0.5, 19) (0.6, 16) (0.6, 11) (0.7, 8) (0.7, 7) (0.7, 6) (0.7, 5)
0.5 (0.3, 29) (0.3, 28) (0.4, 25) (0.4, 22) (0.4, 17) (0.5, 13) (0.5, 11) (0.5, 10) (0.5, 9)
0.6 (0.1, 36) (0.1, 34) (0.1, 32) (0.1, 29) (0.2, 23) (0.2, 19) (0.2, 17) (0.2, 16) (0.2, 15)
0.7 (-0.2, 44) (-0.2, 42) (-0.2, 40) (-0.2, 37) (-0.2, 31) (-0.2, 27) (-0.2, 25) (-0.2, 23) (-0.2, 22)
0.8 (-0.6, 54) (-0.6, 52) (-0.7, 50) (-0.7, 47) (-0.8, 42) (-0.9, 38) (-0.9, 36) (-0.9, 34) (-1.0, 33)
0.9 (-1.5, 67) (-1.5, 65) (-1.6, 64) (-1.8, 62) (-2.0, 58) (-2.3, 54) (-2.5, 52) (-2.6, 51) (-2.6, 50)

1
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γ1,s = γ0 + γ̄0. By Cauchy’s theorem, there is for γ̄0 the integral representation

γ̄0 =
1

2πi

∫

|γ|=r

γ(A′(γ) + E′(γ))

A(γ) + E(γ)
dγ. (30)

Since we have 0 6= |A(γ)| ≥ 2|E(γ)| on |γ| = r, it follows that

γ̄0 =

∞
∑

n=0

(−1)n

2πi

∫

|γ|=r

γ(A′(γ) + E′(γ))
(E(γ))n

(A(γ))n+1
dγ. (31)

Due to analyticity of γ/A(γ), the term with n = 0 vanishes. For n = 1, 2, . . .,
we furthermore have that

1

2πi

∫

|γ|=r

γ(A′(γ) + E′(γ))
(E(γ))n

(A(γ))n+1
dγ (32)

=
1

2πi

∫

|γ|=r

1

γn
(A′(γ) + E′(γ))

( γ

A(γ)

)n+1

(E(γ))n dγ

=
1

(n− 1)!

( d

dγ

)n−1[
(A′(γ) + E′(γ))

( γ

A(γ)

)n+1

(E(γ))n
]

γ=0
.

This is the result in (29), and concludes the proof.

When using the first two terms in (29), we get for γ̄0 the approximation

− E

A′
+

EE′

(A′)2
− A′′E2

2(A′)3
− 3A′′E′E2

(A′)4
+

E′′E2

(A′)3
+

2E(E′)2

(A′)3
, (33)

with all functions evaluated at γ = 0. The first term gives an s−1/2-correction
of γ0, the second term gives an s−1-contribution, and other terms give contri-
butions of O(s−3/2) or smaller. Summarizing, we thus have that

γ1,s = γ0 + γ̄0 = γ0 −
1√
s

D1(γ0)

D0
′(γ0)

+O
(1

s

)

. (34)
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A Higher-order terms in asymptotic expansions

We now provide closed-form expressions for the asymptotic expansion in (8). We
drop the dependence on γ for notational convenience, and prove the following
result.

Theorem 3. As s → ∞, (Rs − ns)/qs = R0 +R1/
√
s+O(1/s), where

R0 =
WL

0 +WR
0

B0 + F0
, R1 =

WL
1 +WR

1

B0 + F0
− (WL

0 +WR
0 )(B1 + F1)

(B0 + F0)2
, (35)

and

WL
0 =

∫ 0

−∞
r(x)e−

1
2
x2−γx dx,

WL
1 = 1

2

∫ 0

−∞
(13x

3 − (1 + γ2)x)r(x)e−
1
2
x2−γx dx+ r(0),

WR
0 =

∫ ∞

0

r(x)f(x)e−γx dx,

WR
1 = − 1

2γ
2

∫ ∞

0

xr(x)f(x)e−γx dx− 1
2r(0)f(0), (36)
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as well as

B0 =
Φ(γ)

φ(γ)
, B1 = 1

3

(

2 + γ2 + γ3Φ(γ)

φ(γ)

)

, (37)

F0 =

∫ ∞

0

f(x)e−γx dx, F1 = − 1
2γ

2

∫ ∞

0

xf(x)e−γx dx− 1
2f(0).

Proof. Note after substituting (2) into Rs =
∑∞

k=0 rs(k)πs(k), that asymptoti-
cally

Rs − ns

qs
=

∑s
k=0 r

(

k−s√
s

) (sρ)k

k! + (sρ)s

s!

∑∞
k=s+1 r

(

k−s√
s

)

ρk−sf
(

k−s√
s

)

∑s
k=0

(sρ)k

k! + (sρ)s

s!

∑∞
k=s+1 ρ

k−sf
(

k−s√
s

)

. (38)

Dividing by the factor (sρ)s/s!, we obtain the form

Rs − ns

qs
=

WL
s +WR

s

B−1s + Fs

, (39)

where we have introduced notation for the Erlang B formula,Bs(ρ) = ((sρ)s/s!)/
(
∑s

k=0(sρ)
k/k!), and we have defined Fs =

∑∞
n=0 ρ

n+1f((n + 1)/
√
s), WL

s =
∑s

k=0 r((k − s)/
√
s)(s!(sρ)k−s)/k!, and WR

s =
∑∞

n=0 r((n+ 1)/
√
s)ρn+1f((n+

1)/
√
s). In [4, 7], it is proven using Jagerman’s asymptotic expansions [3] for

Erlang B’s formula that asymptotically,

WL
s =

√
sWL

0 +WL
1 +O

( 1√
s

)

, WR
s =

√
sWR

0 +WR
1 +O

( 1√
s

)

,

B−1s =
√
sB0 +B1 +O

( 1√
s

)

, Fs =
√
sF0 + F1 +O

( 1√
s

)

,

with the coefficients as given in (36) and (37). After substituting these asymp-
totic expansions into (39), we obtain

Rs − ns

qs
=

WL
0 +WR

0

B0 + F0
·
1 + 1√

s
(WL

1 +WR
1 )/(WL

0 +WR
0 ) +O(1s )

1 + 1√
s
(B1 + F1)/(B0 + F0) +O(1s )

.

By then utilizing the Taylor expansion 1/(1 + x) = 1 − x + O(x2), we obtain
the result.

Delay probability The delay probability Ds =
∑∞

k=s πs(k) can be rep-
resented by rs(k) = 1[k ≥ s], recall (3). This corresponds asymptotically
to r(x) = 1[x ≥ 0]. introduce for convenience L =

∫∞
0

f(x)e−γx dx. Then,

WL
0 = WL

1 = 0, WR
0 = L, WR

1 = 1
2γ

2L′, F0 = L, and F1 = 1
2γ

2L′− 1
2 . It follows

that D0 = L/(Φ(γ)/φ(γ) + L) and

D1 =
1
2γ

2L′
Φ(γ)
φ(γ) + L

−
L(13

(

2 + γ2 + γ3 Φ(γ)
φ(γ)

)

+ 1
2γ

2L′ − 1
2 )

(Φ(γ)
φ(γ) + L)2

. (40)

16



Queue length The mean queue length Qs =
∑∞

k=s(k − s)πs(k) can be rep-
resented by rs(k) = (k − s)1[k ≥ s]. Scaling so that Qs/

√
s =

∑∞
k=s((k −

s)/
√
s)πs(k), we see that the revenue structure can asymptotically be related

to the revenue profile r(x) = x1[x ≥ 0]. Therefore, WL
0 = WL

1 = 0, WR
0 = −L′,

WR
1 = − 1

2γ
2L′′, F0 = L, and F1 = 1

2γ
2L′ − 1

2 . Thus Qs/
√
s = Q0 + Q1/

√
s +

O(1/s) with Q0 = −L′/(Φ(γ)/φ(γ) + L) and

Q1 = −
1
2γ

2L′
Φ(γ)
φ(γ) + L

+
L′(13

(

2 + γ2 + γ3 Φ(γ)
φ(γ)

)

+ 1
2γ

2L′ − 1
2 )

(Φ(γ)
φ(γ) + L)2

. (41)
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