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Abstract.
The Struve functions Hn(z), n = 0, 1, ... , are approximated in a simple, ac-
curate form that is valid for all z ≥ 0. In [R.M. Aarts, A.J.E.M. Janssen,
J. Acoust. Soc. Am. 113, 2635–2637 (2003)] the case n = 1, that arises in
impedance calculations for the rigid-piston circular radiator mounted in an
infinite planar baffle, has been done. The more general Struve functions oc-
cur when other acoustical quantities and/or non-rigid pistons are considered.
The key step in the paper just quoted is to express H1(z) as 2

π
−J0(z)+ 2

π
I(z),

where J0 is the Bessel function of order zero and the first kind, and I(z) is
the Fourier cosine transform of [(1−t)/(1+t)]1/2, 0 ≤ t ≤ 1. The square-root
function is optimally approximated by a linear function ĉt + d̂, 0 ≤ t ≤ 1,
and the resulting approximated Fourier integral is readily computed explic-
itly in terms of sin z/z and (1− cos z)/z2. The same approach has been used
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in [A. Maurel et al., Phys. Rev. B75, 224112 (2007)] to approximate H0(z)
for all z ≥ 0. In the present paper, the square-root function is optimally
approximated by a piecewise linear function consisting of two linear func-
tions supported by [0, t̂0] and [t̂0, 1] with t̂0 the optimal take-over point. It
is shown that the optimal two-piece linear function is actually continuous at
the take-over point, causing a reduction of the additional complexity in the
resulting approximations of H0 and H1. Furthermore, this allows analytic
computation of the optimal two-piece linear function. By using the two-piece
instead of the one-piece linear approximation, the RMS approximation error
is reduced by roughly a factor of 3 while the maximum approximation error
is reduced by a factor of 4.5 for H0 and of 2.6 for H1. Recursion relations
satisfied by Struve functions, initialized with the approximations of H0 and
H1, yield approximations for higher order Struve functions.

PACS number(s): 43.38.Ar, 43.20.Bi, 43.40.At

I Introduction

Struve functions are used in various disciplines of the applied sciences,
such as optics, fluid dynamics, acoustics, aerodynamics, see [19], Subsec.
11.12 on p. 298 for a listing of applications. In [3], Sec. I, the role of the
Struve function H1 in the computation of the impedance for the rigid-piston
circular radiator mounted in an infinite baffle is reviewed. Struve functions
Hn of order n 6= 1 occur in a number of cases where acoustical quantities
for piston radiation are computed analytically. In [12], Subsecs. IV.B-C,
Greenspan expresses the impedance for certain low-order non-rigid piston
radiators in terms of H0, H1 and H2, and a similar thing is done in [12],
Subsecs. V.B-C for the power output. The developments in [12] have been
continued in [4] by Aarts and Janssen where Struve-type functions occur in
a general setting for the calculation of impedance, power output as well as
the edge pressure.

In [3], Sec. II an approximation of H1(z) has been developed in terms of
the Bessel function J0(z) and sin z/z, (1− cos z)/z2 that is simple, accurate
and valid for all z ≥ 0 at the same time. Because of its accuracy and absence
of patchwork for different z-regimes, this approximation has become quite
popular among workers and teachers in and outside the acoustic community.
The approximation in question reads

H1(z) =
2z

π

1∫
0

√
1− t2 sin zt dt (1a)
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=
2

π
− J0(z) +

2

π

1∫
0

√
1− t
1 + t

cos zt dt (1b)

≈ 2

π
− J0(z) +

(16

π
− 5
) sin z

z
+
(

12− 36

π

) 1− cos z

z2
, (1c)

where the two equalities in (1a) and (1b) are exact, while the approximate
identity in (1c) has been obtained by determining the least-mean-square fit
ĉ+ d̂t of [(1− t)/(1 + t)]1/2, 0 ≤ t ≤ 1, and subsequently an explicit compu-

tation of the approximated integral
1∫
0

(ĉ+ d̂t) cos zt dt. The squared approx-

imation error in (1) on [0,∞) equals 2.2× 10−4 while the maximum absolute
error equals 0.0049.

The approximation in (1) is mentioned and used explicitly in [1], Eq. (18),
[2], Eq. (9), [5], Eq. (37), [6], Eq. (7), [7], Eq. (9), [8], Eq. (37), [10], Eq. (4),
[11], Eq. (A2), [13], Eq. (6), [14], Eq. (7), [15], Eq. (25), [16], Eq. (1.82) on
p. 28, [17], Appendix C.2, [20], Eq. (7), [23], between Eqs. (25–26), and it is
mentioned in passing in [4], below Eq. (29), [9], below Eq. (3), [24], above
Eq. (10.52) on p. 464.

As said, the Struve function H1(z) occurs in the analytical expression
for the piston mechanical radiation impedance in the case of a rigid-piston
radiator mounted in an infinite baffle, see [3] and [22], Sec. 5-4, pp. 221–225.
In the same context, the pressure at the edge of the radiator is given by

pedge
ρ0cVs

=
1

2

[
1− J0(2ka) + iH0(2ka)

]
, (2)

where ρ0 is the density of the medium, c is the speed of sound, k = ω/c is
the wave number with ω the radial frequency of the vibrating piston, and Vs
is the velocity of the piston, see [4], Sec. III and [21] pp. 163–164. Note the
occurrence of the Struve function H0(z) in (2).

In [17], Appendix C.2, there has been derived, using the method of [3],
Sec. II, the approximation

H0(z) =
2z

π

1∫
0

sin zt√
1− t2

dt (3a)

= J1(z) +
2

π

1∫
0

√
1− t
1 + t

sin zt dt (3b)
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≈ J1(z) +
(

7− 20

π

) 1− cos z

z
+
(36

π
− 12

) sin z − z cos z

z2
.(3c)

The maximum absolute error of this approximation equals 0.0056. Having
available the approximation (1) and (3) for H1(z) and H0(z), one can ap-
proximate Struve functions Hn(z) of order n = 2, 3, ... by using the recursive
formula, see [19], 11.4.23 on p. 292

Hn+1(z) = −Hn−1(z) +
2n

z
Hn(z) +

(1
2
z)n

√
π Γ(n+ 3

2
)
, n = 1, 2, ... , (4)

initialized by the approximations in (1) and (3).
Due to error propagation in the recursion (4), it is desirable to aim at

high-accuracy approximations of H0 and H1. Increasing accuracy of the
approximations is also beneficial for the investigations in [23], where consid-
erable computer-time savings are reported when the approximation is used
extensively, in [18], where (see above Eq. (6)) the approximation is used in
the codes, and in [10], where the approximation in (1) is even declared to be
an exact identity. It should be observed that infinite series expressions with
excellent convergence behaviour exist for all Hn(z). For instance, see [19],
11.4.21 on p. 292,

H0(z) =
4

π

∞∑
k=0

J2k+1(z)

2k + 1
. (5)

Since Jl(z) decays for fixed z very rapidly in l from l = |z| onwards, it would
be sufficient to include in the series in (5) all terms k with 2k+ 1 ≥ 3

2
|z|+ 5,

say, to have an excellent approximation to H0(z). However, in this way, the
truncation index becomes dependent on z, while the approximations in (1)
and (3) have the appealing feature to have a fixed, and low, number of terms.
The (known) result (5) is rediscovered in [6], Eq. (10).

In this paper, we improve the approximations in (1) and (3) by amplifying
the approach used in [3], Sec. 2. Instead of a linear approximation ĉ+ d̂t to
the function [(1− t)/(1 + t)]1/2, we now use an approximation

f̂(t) =

 ĉ1 + d̂1t , 0 ≤ t < t0 ,

ĉ2 + d̂2t , t0 < t ≤ 1 ,
(6)

for this square-root function. Here ĉ1 = ĉ1(t0), d̂1 = d̂1(t0) and ĉ2 = ĉ2(t0),
d̂2 = d̂2(t0) minimize, for a given t0,

F1(t0 ; c, d) =

t0∫
0

∣∣∣√1− t
1 + t

− (c+ dt)
∣∣∣2 dt (7)
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and

F2(t0 ; c, d) =

1∫
t0

∣∣∣√1− t
1 + t

− (c+ dt)
∣∣∣2 dt , (8)

respectively, as a function of real c, d. Subsequently, we minimize the total
mean square error

F (t0) =

t0∫
0

∣∣∣√1− t
1 + t

− ĉ1(t0)− d̂1(t0) t
∣∣∣2 dt

+

1∫
t0

∣∣∣√1− t
1 + t

− ĉ2(t0)− d̂2(t0) t
∣∣∣2 dt (9)

as a function of t0. We have carried out the optimization of F (t0) numeri-
cally, and it turned out, surprisingly, that the resulting optimal f̂ in (6) is
continuous at t = t̂0, the optimal t0. Hence, we have

ĉ1(t̂0) + d̂1(t̂0) t̂0 = ĉ2(t̂0) + d̂2(t̂0) t̂0 , (10)

a fact that we have been able to establish mathematically. As a consequence,
the optimal approximation can be computed completely analytically (except
for numerically solving a simple and explicit equation for t0). Furthermore,
the additional complexity in approximating H1(z) and H0(z), when passing
from an optimal linear approximation ĉ+ d̂t to the optimal two-piece linear
function f̂(t) in (6), is embodied by only one extra term

2

π
(d̂2(t̂0)− d̂1(t̂0)) ·


1− cos zt0

z2
and

zt0 − sin zt0
z2

(11)

for (1) and (3), respectively.
In Sec. II we develop the optimal two-piece linear approximation to [(1−

t)/(1 + t)]1/2, 0 ≤ t ≤ 1, in detail. In Sec. III we compute the resulting
approximations to H1(z) and H0(z), z ≥ 0, taking advantage of continuity
of the optimal piecewise linear approximations at the take-over point t̂0. In
Sec. IV we give some considerations about approximation of Hn(z), z ≥ 0,
for n = 2, 3, ... , and in Sec. V we present our conclusions.
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II Two-piece linear approximation of square-

root function

A Best linear approximation on a single interval

We consider first a general, continuous, real-valued function f on the
interval [0, 1] that is to be approximated as a linear combination of two
continuous, real-valued functions g and h on a subinterval I of [0, 1]. For
real-valued functions k and l on I, we have the inner product and inner
product norm

(k, l)I =

∫
I

k(t) l(t) dt , ‖k‖I =

∫
I

|k(t)|2 dt

1/2

. (12)

When I = [0, 1], we delete the subscript I in (12).
It follows from elementary linear algebra for functions on an interval that

the minimum of
‖f − (cg + dh)‖2I (13)

over all c and d is assumed for

c = ĉ =
zv − yw
xz − y2

, d = d̂ =
−yv + xw

xz − y2
, (14)

where

x = xI = (g, g)I , y = yI = (g, h)I , z = zI = (h, h)I , (15)

and
v = vI = (f, g)I , w = wI = (f, h)I . (16)

Moreover,
(f − (ĉg + d̂h), g)I = 0 = (f − (ĉg + d̂h), h)I , (17)

and the minimal mean square error is given by

‖f − (ĉg + d̂h)‖2I = ‖f‖2I − ‖ĉg + d̂h‖2I = ‖f‖2I − (ĉv + d̂w) . (18)

B Best approximation by two-component function

We next let 0 ≤ t0 ≤ 1, and we assume that we have continuous functions
g1 and h1 on [0, t0] and g2 and h2 on [t0, 1]. We define ĉ1(t0), d̂1(t0) and ĉ2(t0),
d̂2(t0) as the coefficients c1, d1 and c2, d2 for which

‖f − (c1g1 + d1h1)‖2I=[0,t0]
and ‖f − (c2g2 + d2h2)‖2I=[t0,1]

(19)
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are minimal, respectively, with minimal values

F1(t0) =

t0∫
0

|f(t)− ĉ1(t0) g1(t)− d̂1(t0)h1(t)|2 dt (20)

and

F2(t0) =

1∫
t0

|f(t)− ĉ2(t0) g2(t)− d̂2(t0)h2(t)|2 dt , (21)

respectively. We intend to minimize

F (t0) = F1(t0) + F2(t0) (22)

over t0 ∈ [0, 1]. It is shown in Appendix A (prime denoting differentiation
with respect to t0) that

F ′(t0) = |f(t0)− ĉ1(t0) g1(t0)− d̂1(t0)h1(t0)|2

− |f(t0)− ĉ2(t0) g2(t0)− d̂2(t0)h2(t0)|2 . (23)

Hence, at any stationary point t0 of F , we have

|f(t0)− ĉ1(t0) g1(t0)− d̂1(t0)h1(t0)| = |f(t0)− ĉ2(t0) g2(t0)− d̂2(t0)h2(t0)| .
(24)

In particular, when both quantities between the modulus signs in (24) have
the same sign, we have

ĉ1(t0) g1(t0) + d̂1(t0)h1(t0) = ĉ2(t0) g2(t0) + d̂2(t0)h2(t0) . (25)

That is, under this same-sign condition, the two-component function

f̂(t) =

 ĉ1(t0) g2(t) + d̂1(t0)h1(t) , 0 ≤ t < t0 ,

ĉ2(t0) g2(t) + d̂2(t0)h2(t) , t0 < t ≤ 1 ,
(26)

is continuous at any stationary point t0 of f where the same-sign condition
is valid.

C Specialization
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0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

Figure 1: (Color online) The square root function
√

(1− t)/(1 + t) (solid
bold line) vs. t. The optimal linear approximation (solid straight line). The
optimal approximation on the interval [0, t̂0] (dot-dashed line), and on the
interval [t̂0, 1] (dashed line), the latter two lines cross at t = t̂0 = 0.883... .

We consider now the case (see Fig. 1) that

f(t) =

√
1− t
1 + t

, 0 ≤ t ≤ 1 ; g1(t) = 1 , h1(t) = t , 0 ≤ t ≤ t0 ,

g2(t) = 1 , h2(t) = t , t0 ≤ t ≤ 1 .

(27)

We have now for (15) and (16)

x1 = x1(t0) = t0 , y1 = y1(t0) = 1
2
t20 , z1 = z1(t0) = 1

3
t30 , (28)

and

v1 = v1(t0) =
[√

1− t2 − 2 arctan
(√1− t

1 + t

)]t0
0
, (29)

w1 = w1(t0) =
[
(−1 + 1

2
t)
√

1− t2 + arctan
(√1− t

1 + t

)]t0
0
. (30)

The results (29), (30) can be verified directly by computing the derivatives of
the right-hand sides as [(1−t)/(1+t)]1/2 and t [(1−t)/(1+t)]1/2, respectively.
We compute from (14)

ĉ1(t0) + d̂1(t0) t0 =
−2v1(t0)

t0
+

6w1(t0)

t20
. (31)
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The computation of ĉ2(t0) + d̂2(t0) t0 can be done similarly, but is facilitated
by considering 1− t0, f(1− t) in the above while noting that

1−t0∫
0

f(1− t) dt = v2(t0) ,

1−t0∫
0

t f(1− t) dt = v2(t0)− w2(t0) . (32)

It is thus found that

ĉ2(t0) + d̂2(t0) t0 =
−2v2(t0)

1− t0
+

6(v2(t0)− w2(t0))

(1− t0)2
. (33)

It has been observed, by numerical inspection of the total error function F
in (22) for the present case, that the optimal t0 = t̂0 is to be found in the
vicinity of 0.90. In this range, we have that f(t0)− ĉi(t0)− d̂i(t0) t0 is negative
for both i = 1 and 2; also see Fig. 2.

0.2 0.4 0.6 0.8 1.0
t

-0.02

-0.01

0.01

0.02

Figure 2: (Color online) The approximation errors vs. t corresponding to
Fig. 1. The error of the approximation on the interval [0, t̂0] (dot-dashed
line) crosses the approximation error on the interval [t̂0, 1] (dashed line) at
t = t̂0 = 0.883... . The errors at t = 1 for the solid line and dashed line are
equal to -0.146018366 and -0.063614711, respectively.

Hence, the same-sign condition is satisfied for the stationary point t̂0 near
0.90, and so t̂0 can be found by solving (25) for t0 near 0.90. By (31) and
(33), this becomes

−2v1(t0)

t0
+

6w1(t0)

t20
=
−2v2(t0)

1− t0
+

6(v2(t0)− w2(t0))

(1− t0)2
. (34)

We eliminate v1(t0) and w1(t0) from (34) by using that

v1(t0) + v2(t0) =

1∫
0

√
1− t
1 + t

dt =
π

2
− 1 , (35)
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w1(t0) + w2(t0) =

1∫
0

t

√
1− t
1 + t

dt = 1− π

4
. (36)

Furthermore, for v2(t0) and w2(t0) we have the explicit expressions (29) and
(30) with limits t0 and 1 rather than 0 and t0. We then find after some
further rearrangement the equation

(6− 3
2
π − (π − 2) t0)(1− t0)2

= (−6 + 8t0 + 16t20) arctan
(√1− t0

1 + t0

)
+ (6− 12t0 − 2t20)

√
1− t20 .

(37)

It is found numerically that (37) holds for

t0 = 0, 1, and t̂0 = 0.8830472903... . (38)

At t0 = t̂0, we compute (using (14), (29–30), (35–36), (18) and the integral∫
1−t
1+t

dt = 2 ln(1 + t)− t)

ĉ1(t̂0) = 0.9846605676... , d̂1(t̂0) = −0.8153693250... , (39)

ĉ2(t̂0) = 1.7825674761... , d̂2(t̂0) = −1.7189527653... , (40)

with residual mean square errors F1(t̂0) and F2(t̂0) given by 0.000026 and
0.000014, respectively. It is thus seen that the total residual mean square
error F (t̂0) = F1(t̂0) + F2(t̂0) is about 4 × 10−5, which is a factor 8.5 lower
than the residual mean square error 3.4×10−4 that was obtained in [3], Sec. 2
for the optimal linear function ĉ + d̂t. The function [(1− t)/(1 + t)]1/2 with
its optimal linear and optimal two-piece linear approximation is plotted in
Fig. 1, and the corresponding approximation errors are plotted in Fig. 2.

With a glance at Fig. 1 and having in mind the accuracy gains just
reported, increased complexity when breaking up the integration interval
in more than two pieces is not likely to be compensated by significance of
the further improved accuracy.

III Improved approximation of H0 and H1

We now compute the approximations of H0(z) and H1(z), z ≥ 0, that
follow by inserting the optimal two-piece linear function as an approximation
of [(1− t)/(1 + t)]1/2 into the integrals in the third members in (1) and (3).
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Thus, we let f̂(t) as in (6) with t0 = t̂0 and ĉ1, d̂1, ĉ2, d̂2 given by (38) and
(39–40). This f̂(t) is piecewise linear on [0, 1] and continuous at t = t̂0. For
the integral in (1) we get, using partial integration,

1∫
0

√
1− t
1 + t

cos zt dt ≈
1∫

0

f̂(t) cos zt dt

=
1

z
f̂(z) sin zt

∣∣∣1
0
−1

z

1∫
0

f̂ ′(z) sin zt dt

= (ĉ2 + d̂2)
sin z

z
− d̂2

1− cos z

z2
+ (d̂2 − d̂1)

1− cos z t̂0
z2

. (41)

There results the approximation

H1(z) ≈ 2

π
− J0(z) + A1

sin z

z
+B1

1− cos z

z2
+ C1

1− cos z t̂0
z2

, (42)

where

A1 =
2

π
(ĉ2 + d̂2) = 0.0404983827... , (43)

B1 = − 2

π
d̂2 = 1.0943193181... , (44)

C1 =
2

π
(d̂2 − d̂1) = −0.5752390840... , (45)

and t̂0 given in (38). The approximation in (42) for H1(z) is of the same
form as the one in (1), except for the last term.

In a similar fashion, we compute for the integral in (3)

1∫
0

√
1− t
1 + t

sin zt dt ≈
1∫

0

f̂(t) sin zt dt

=
−1

z
((ĉ2 + d̂2) cos z − ĉ1) + d̂1

sin z t̂0
z2

+ d̂2
sin z − sin z t̂0

z2

= ĉ2
1− cos z

z
+ d̂2

sin z − z cos z

z2
+ (d̂2 − d̂1)

z t̂0 − sin z t̂0
z2

, (46)

where in the last step we have used ĉ1 + d̂1t̂0 = ĉ2 + d̂2t̂0. There results the
approximation

H0(z) ≈ J1(z) + A0
1− cos z

z
+B0

sin z − z cos z

z2
+ C0

z t̂0 − sin z t̂0
z2

, (47)
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where

A0 =
2

π
ĉ2 = 1.134817700... , B0 = −B1 , C0 = C1 , (48)

with B1, C1 given in (44), (45), and t̂0 given in (38).
In Fig. 3 we show the approximation errors associated to (42) and (47)

as a function of z, 0 ≤ z ≤ 60, where the exact results are obtained by
using Mathematica (V.10). It is seen that the maximal absolute error for
approximating H1(z) is 0.00185 which is about a factor 2.6 lower than the
maximal absolute error 0.00485 that can be obtained from Fig. 2 in [3] using
the approximation (1). The maximal absolute approximation error in Fig. 3
is 0.00125 which is about a factor 4.5 lower than the maximal absolute error
0.00558 that can be obtained from Fig. 16 in [17].

10 20 30 40 50 60
z

-0.0015

-0.0010

-0.0005

0.0005

0.0010

0.0015

0.0020

Figure 3: (Color online) The error in the approximation vs. z of H0(z) (solid
curve), by Eq. (47) and H1(z) (dashed curve), by Eq. (42).

IV Approximation of Hn(z), n = 2, 3, ...

There are a number of conceivable approaches to approximate Hn(z),
n = 2, 3, ... . We apply the approximation (42) and (47) for H1(z) and H0(z)
to approximate Struve functions Hn(z) of order n = 2, 3, ... by using the
recursive formula (4). As an example we compute H2(z) by this method and
we show the result in Fig. 4.
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z

-0.002

-0.001

0.001

0.002

Figure 4: (Color online) The error in the approximation vs. z of H2(z) (solid
curve), and H3(z) (dashed curve), using the approximations (42) and (47)
and the recursive formula (4).

V Conclusions

Simple and effective approximations of the Struve functions H0 and H1

for all values of z have been developed using only a limited number of el-
ementary functions. Using these approximations and a recursion formula,
approximations for general order Hn can be computed. The obtained ap-
proximations have a higher accuracy than the one obtained in [17] for H0

and the one obtained in [3] for H1; the RMS approximation error is reduced
by roughly a factor of 3 and the maximum approximation error is reduced
by a factor of 4.5 for H0 and of 2.6 for H1, while the new approximations
have each only one extra term. It does not require patchwork formulas, since
it is accurate for the whole range of the independent variable z. The approx-
imations can be used in various fields, with its most prominent engineering
application in electroacoustics. The approximated H1 of [3] has been used
in computer codes, see [18, 23]. The improved approximations are envisaged
to extend the application range of methods and codes that require many
evaluations of Struve functions at many points.

Appendix A: Proof of (23)

We have from basic calculus the formula

d

dt0

 t0∫
0

G(t ; t0) dt

 = G(t0 ; t0) +

t0∫
0

∂G

∂t0
(t ; t0) dt (A1)
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when G(t ; t0) is continuous in t and continuously differentiable in t0. Using
this with

G(t ; t0) = (f(t)− ĉ1(t0) g1(t)− d̂1(t0)h1(t))2 , (A2)

so that

∂G

∂t0
(t ; t0) = −2(f(t)− ĉ1(t0) g1(t)− d̂1(t0)h1(t))

· (ĉ′1(t0) g1(t) + d̂′1(t0)h1(t)) , (A3)

and noting that ĉ′1(t0) g1(t) + d̂′1(t0)h1(t) is a linear combination of g1 and h1
on I = [0, t0], it follows from (17) that

t0∫
0

∂G

∂t0
(t ; t0) dt = 0 . (A4)

Hence, see (20),

F ′1(t0) =
d

dt0

 t0∫
0

G(t ; t0) dt


= G(t0 ; t0) = |f(t0)− ĉ1(t0) g1(t0)− d̂1(t0)h1(t0)|2 . (A5)

Similarly, see (21),

F ′2(t0) = −|f(t0)− ĉ2(t0) g2(t0)− d̂2(t0)h2(t0)|2 , (A6)

and the proof of (23) is complete.
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Stokes equations: An experimental evidence,” Chaos 20, 043107 (2010).
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