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We investigate the presence of triangles in a class of correlated random graphs in which hidden
variables determine the pairwise connections between vertices. The class rules out self-loops and
multiple edges. We focus on the regime where the hidden variables follow a power law with expo-
nent τ ∈ (2, 3), so that the degrees have infinite variance. The natural cutoff hc characterizes the
largest degrees in the hidden variable models, and a structural cutoff hs introduces negative degree
correlations (disassortative mixing) due to the infinite-variance degrees. We show that local cluste-
ring decreases with the hidden variable (or degree). We also determine how the average clustering
coefficient C scales with the network size N , as a function of hs and hc. For scale-free networks with
exponent 2 < τ < 3 and the default choices hs ∼ N1/2 and hc ∼ N1/(τ−1) this gives C ∼ N2−τ lnN
for the universality class at hand. We characterize the extremely slow decay of C when τ ≈ 2 and
show that for τ = 2.1, say, clustering only starts to vanish for networks as large as N = 109.

PACS numbers: 89.75.-k Complex systems, 64.60.aq Networks

I. INTRODUCTION

Random graphs serve as models for large networked
systems that arise in nature or in our technosphere. The
shear complexity of many such networks prevents a de-
tailed microscopic modeling, which is why random graphs
only use partial descriptions of networks, such as degree
distributions. Statistical analysis of network data sugge-
sts that many networks possess a power-law degree dis-
tribution [1–4], where the probability P (k) that a node
has k neighbors scales as k−τ for some characteristic ex-
ponent τ > 0. The power-law distribution leads to the
likely presence of high-degree nodes. Many real-world
networks are reported to have an exponent τ between
2 and 3 [5–7]. Since τ < 3 for these networks, the se-
cond moment of the degree distribution diverges in the
infinite-size network limit.

Hidden variable models present a class of popular null
models for scale-free networks [8, 9]. In these models ver-
tices are characterized by hidden variables that influence
the creation of edges between pairs of vertices. The mo-
dels can be seen as enlarged ensembles of random graphs
that can match in expectation any given degree distribu-
tion P (k). All topological properties, including correla-
tions and clustering, then become functions of the distri-
bution of the hidden variables and the probability of con-
necting vertices [10, 11]. The independence between ed-
ges makes hidden-variable models analytically tractable.
One complication though, is that these hidden-variable
models introduce disassortative degree-degree correlati-
ons when τ < 3: high-degree vertices tend to be con-
nected to low-degree vertices. This negative correlation
can have a strong influence on topological network pro-
perties, including clustering, defined as the presence of
triangles in the network [8, 12].

In [9] it was shown that hidden-variable models with
a nonrestrictive cutoff scheme can generate nearly size-
independent levels of clustering, and can thus generate
networks with high levels of clustering, particularly for τ

close to 2. In the configuration model, without banning
large-degree vertices by installing a cutoff, the long tail
of the power law makes that pairs of high-degree verti-
ces would quite likely share more than one edge. But
hidden-variable models allow at most one edge between
pairs of vertices, so that large-degree vertices must inevi-
tably connect to small-degree vertices due to lack of avai-
lable large-degree vertices. This phenomenon, in turn, is
related to the difference in scaling between the so-called
structural cutoff and natural cutoff. The structural cu-
toff is defined as the largest possible upper bound on the
degrees required to guarantee single edges, while the na-
tural cutoff characterizes the maximal degree in a sample
of N vertices. For scale-free networks with τ ∈ (2, 3] the
structural cutoff scales as N1/2 while the natural cutoff
scales as N1/(τ−1) (see Section II), which gives rise to
structural negative correlations and possibly other finite-
size effects.

Clustering can be measured in various ways. The local
clustering coefficient of a vertex is defined as the num-
ber of existing edges among the set of its neighbors di-
vided by the total number of possible connections bet-
ween them. This can be interpreted as the probability
that two randomly chosen neighbors of a vertex are neig-
hbors themselves. One could calculate a global clustering
coefficient as the total number of triangles (closed triples
of three vertices) divided by the number of connected
triples. However, when τ ∈ (2, 3), this version of the
clustering coefficient has the undesired property that it
always tends to zero when the number of vertices tends to
infinity, even if the network is highly clustered [13]. The-
refore, we employ as a metric a different global clustering
coefficient, the average clustering coefficient C, defined as
the average (over vertices of degree ≥ 2) of the local clus-
tering coefficient of single vertices. For a node i the local
clustering coefficient is given by ci = 2Ti/ki(ki − 1) with
ki the degree of node i and Ti the number of triangles
that vertex i is part of.

In the absence of high-degree nodes, the average clus-
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tering coefficient is given by [2]

C =
1

N

N∑
i=1

ci =
〈k(k − 1)〉2

N〈k〉3
, (1)

which shows that clustering vanishes very fast in the large
network limit N →∞ in support of the tree-like approx-
imations of complex networks. However, for scale-free
distributions with τ < 3, the natural cutoff that scales
as N1/(τ−1) together with (1) gives C ∼ N (7−3τ)/(τ−1).
The diverging C for τ < 7/3 is caused by the many ed-
ges between the high-degree vertices, and can be judged
as anomalous or nonphysical behavior if one wants C to
be smaller than 1 and interpret it as a probability or
proportion. If a structural cutoff of order N1/2 is impo-
sed, hence banning the largest-degree nodes, formula (1)
predicts the correct (in the sense that it matches simula-
tions) scaling N2−τ [9, 14].

In a power-law setting, the infinite variance is essential
for describing scale-free network behavior, which makes
the banning of large-degree vertices unnatural. In this
paper we investigate average clustering for an ensemble
of scale-free random graphs that allows for an interplay
between structural correlations and large-degree nodes.
The clustering coefficient in this ensemble turns out to
depend on the size of the network, the structural cutoff
that arises when conditioning on simplicity and the na-
tural cutoff that accounts for large degrees.

II. HIDDEN VARIABLES AND CUTOFFS

Given N nodes, hidden-variable models are defined as
follows: (i) associate to each node a hidden variable h
drawn from a given probability distribution function ρ(h)
and (ii) join each pair of vertices independently according
to a given probability p(h, h′) with h and h′ the hidden
variables associated to the two nodes. The probability
p(h, h′) can be any function of the hidden variables, as
long as p(h, h′) ∈ [0, 1]. Many networks can be embedded
in this hidden-variable framework, but particular atten-
tion goes to the case in which the hidden variables have
themselves the structure of the degrees of a real-world
network. One could interpret the hidden-variable model
as yielding soft constraints on the degrees, rather than
hard constraints often used in the configuration model
[1–4, 15, 16]. Chung and Lu [17] introduced this model
in the form

p(h, h′) ∼ hh′

N〈h〉
, (2)

so when allowing self-loops and multiple edges, the ex-
pected degree of a node equals its hidden variable. For
(2) to make sense we need that the maximal value of the
product hh′ never exceeds N〈h〉 and this can be guaran-
teed by the assumption that the hidden degree h is smal-
ler than the structural cutoff hs =

√
N〈h〉. While this

restricts p(h, h′) within the interval [0, 1], the structural

cutoff strongly violates the reality of scale-free networks.
Regarding the hidden variables as the desired degrees in
the CM, the structural cutoff conflicts with the fact that
the natural cutoff for the degree scales as N1/(τ−1).

In [8, 10, 11] more general hidden-variable models were
introduced, constructed to preserve conditional indepen-
dence between edges, while making sure there is only
one edge between every vertex pair and that the natural
extreme values of power-law degrees are not neglected.
Within that large spectrum of models, we focus on the
subset of models for which

P (k) ∼ ρ(k), (3)

so that the degrees and the hidden variables in the net-
work are similar. The class of models considered in this
paper starts from the ansatz p(h, h′) ≈ hh′/N〈h〉, but
like [8, 10, 11, 18, 19] adapts this setting to incorporate
extreme values and to rule out self-loops.

A. Class of random graphs

Within the wide class of hidden-variable models [8, 10,
11] we consider probabilities of the form

p(h, h′) = r(u) = uf(u) with u =
hh′

h2s
(4)

with functions f : [0,∞) → (0, 1] that belong to the F-
class spanned by the properties

F1 f(0) = 1, f(u) decreases to 0 as u→∞.

F2 r(u) = uf(u) increases to 1 as u→∞.

F3 f is continuous and there are 0 = u0 < u1 < . . . <
uK <∞ such that f is twice differentiable on each
of the intervals [uk−1, uk] and on [uK ,∞), where

f ′(uk) = 1
2f
′(uk + 0) + 1

2f
′(uk − 0) (5)

for k = 1, . . . ,K and f ′(0) = f ′(+0).

F4 −uf ′(u)/f(u) is increasing in u ≥ 0.

The class of hidden-variable models considered in this
paper is completely specified by all functions f that sa-
tisfy F1-F4. Here are important classical members of the
F-class:

(i) (maximally dense graph) The Chung-Lu setting

r(u) = min{u, 1}. (6)

This is the default choice in [11] and leads within
the F-class to the densest random graphs.

(ii) (Poisson graph) A simple exponential form gives

r(u) = 1− e−u. (7)
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Here we take u to define the intensities of Poisson
processes of edges, and ignore multiple edges, so
that (7) gives the probability that there is an edge
between two vertices. Variants of this form are co-
vered in e.g. [11, 19–21].

(iii) (maximally random graph) The next function was
considered in [8, 9, 22]:

r(u) =
u

1 + u
. (8)

This connection probability ensures that the en-
tropy of the ensemble is maximal [9]. This random
graph is also known in the literature as the genera-
lized random graph [18, 23].

The conditions F1-F4 will prove to be the minimally
required conditions for the results that we present for the
clustering coefficient. The F-class is constructed so that
it remains amenable to analysis; the technique developed
in [9] to characterize the average clustering coefficient
despite the presence of correlations can be applied to our
class. Notice that the technical condition F3 allows to
consider piecewise smooth functions with jumps in their
derivatives, such as min(1, 1/u) that comes with (6). It
can be shown that F4 is slightly stronger than the condi-
tion of concavity of r(u). It appears in Section III that F4
is necessary and sufficient for monotonicity in a general
sense of the local clustering coefficient c(h).

B. Cutoffs and correlation

The hidden-variable model by definition excludes self-
loops and avoids multiple connections after imposing the
structural cutoff hs ∼ N1/2. Since the natural cutoff is
of the order hc ∼ N1/(τ−1), for τ ≥ 3 the structural cu-
toff dominates and correlations are avoided. For τ < 3,
however, the structural cutoff is smaller than the natural
cutoff predicted by extreme value theory. All actual cu-
toffs larger than hs will then result in a network with a
structure that can only be analyzed by considering non-
trivial degree-degree correlations.

The structural cutoff hs now marks the point as of
which correlations imposed by the network structure
arise. All pairs of vertices with hidden variables smal-
ler than this cutoff are connected with probability close
to u = hh′/h2s and do not show degree-degree correlation.
The extent to which the network now shows correlation is
determined by the gap between the natural cutoff hc and
the structural cutoff hs. A fully uncorrelated network ari-
ses when hc < hs, while correlation will be present when
hc > hs. Let 〈h〉 denote the average value of the random
variable h with density ρ(h) = Ch−τ on [hmin, N ], so
that

〈h〉 =

∫ N
hmin

h1−τdh∫ N
hmin

h−τdh
=
τ − 1

τ − 2

h2−τmin −N2−τ

h1−τmin −N1−τ . (9)

With the default choices

hs =
√
N〈h〉, (10)

hc = (N〈h〉)1/(τ−1) (11)

in mind, the regime in terms of cutoffs we are interested
in is, just as in [9],

hs ≤ hc � h2s, (12)

where we regard these cutoffs as indexed by N and con-
sider what happens as N → ∞, with emphasis on the
asymptotic regime hs � hc for N large.

In Appendix H we show that hc as given in (11) is
an accurate approximation of E[max(h1, . . . , hN )], where
the hi are i.i.d. with ρ(h) as density.

III. UNIVERSAL PROPERTIES

For the class of hidden-variable models described
in Section II A, we will characterize the large-network
asymptotics of the local clustering coefficient c(h) and
average clustering coefficient C. The first result in this
direction for C was obtained for a class of uncorrelated
random scale-free networks with a cutoff of N1/2 [14]
for which C turned out to scale as N2−τ , a decreasing
function of the network size for τ > 2. In [9] the more
general setup discussed in Section II was used, with the
specific choice of r(u) = u/(1 + u). After involved calcu-
lations with Lerch’s transcendent, [9] revealed the scaling
relation

C ∼ h−2(τ−2)s ln(hc/hs). (13)

For the default choices (10) and (11) this predicts C ∼
N2−τ lnN (ignoring the constant).

We adopt the hidden variables formalism developed in
[10] that leads, among other things, to explicit expressi-
ons for the local clustering coefficient c(h) of a node with
hidden variable h and for the average clustering coeffi-
cient C.

The clustering coefficient of a vertex with hidden va-
riable h can be interpreted as the probability that two
randomly chosen edges from h are neighbors. The clus-
tering of a vertex of degree one or zero is defined as zero.
Then, if vertex h has degree at least two,

c(h) =

∫ hc

hmin

∫ hc

hmin

p(h′|h)p(h′, h′′)p(h′′|h)dh′dh′′, (14)

with p(h′|h) the conditional probability that a randomly
chosen edge from an h vertex is connected to an h′ vertex
given by

p(h′|h) =
ρ(h′)p(h, h′)∫

h′′
ρ(h′′)p(h, h′′)dh′′

. (15)

The degree of a vertex conditioned on its hidden vari-
able h is distributed as a Poisson random variable with
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parameter h [10] and [23, Chapter 6]. Therefore, the pro-
bability that a vertex with hidden variable h has degree
at least two is given by

P(k ≥ 2 | h) =

∞∑
k=2

hke−k

k!
= 1− e−h − he−h. (16)

Therefore, for ρ(h) ∼ h−τ [10, Eq. (29)]

c(h) = (1− e−h − he−h)

·
∫ hc
hmin

∫ hc
hmin

ρ(h′)p(h, h′)ρ(h′′)p(h, h′′)p(h′, h′′)dh′dh′′[ ∫ hc
hmin

ρ(h′)p(h, h′)dh′
]2 ,

(17)

and hence

C =

∫ hc

hmin

ρ(h)c(h)dh. (18)

The Poisson distribution is sharply peaked around k = h,
which for large k yields

P (k) ∼ ρ(k) and c̄(k) ∼ c(k), (19)

where c̄(k) denotes the average clustering coefficient over
all vertices of degree k, so that the hidden variables be-
come hidden degrees.

We make the change of variables

a =
1

hs
, b =

hc
hs

(20)

and assume henceforth, in line with (12), that

0 < ahmin ≤ ahminb ≤ 1 ≤ b <∞, 2 < τ < 3. (21)

This gives c(h) = (1− e−h − he−h)cab(h) with

cab(h) =

∫ b
ahmin

∫ b
ahmin

(xy)−τr(ahx)r(ahy)r(xy)dxdy[ ∫ b
ahmin

x−τr(ahx)dx
]2 .

(22)
Note that within the domain of integration [ahmin, b] in
Eq. (22) the arguments ahx and ahy do not exceed a
maximum value O(ab) as long as h < h2s/hc, which tends
to zero under assumption (12). Therefore, since r(u) ≈ u,
cab(h) ≈ cab(0) for h < h2s/hc. When choosing hs as
in (10), this means that cab(h) ≈ cab(0) for h ≤ N〈h〉/hc.
In Proposition 1 below we will prove that h 7→ cab(h) is a
bounded monotonically decreasing function for the class
of models at hand. Furthermore, the density ρ(h) ∼ h−τ
with τ ≥ 2, decays sufficiently rapidly for the integral
in (18) for C to have converged already before cab(h)
starts to drop significantly below its value cab(0) at h = 0.
Thus, C can be approximated with

Cab(τ) = cab(0)

∫ N

hmin

ρ(h)(1− (1 + h)e−h)dh

:= cab(0)A(τ), (23)

where we have conveniently extended the integration
range to the τ -independent interval [hmin, N ] at the ex-
pense of a negligible additional error.

Proposition 1. Assume that f satisfies F1 - F3. Then
cab(h) is decreasing in h ≥ 0 for all a, b with 0 < a < b
if and only if f satisfies F4.

Proposition 1 shows that for large enough h local clus-
tering decreases with the hidden variable. For the de-
fault choices with (6), (10), (11), local clustering c(h) is
plotted in Fig. 1, which shows both exact formulas and
extensive simulations. Because our model starts from a
single-edge constraint, Proposition 1 also provides sup-
port for the asserted dissassortative mixing observed in
many technological and biological networks [8, 12]. The
proof of Proposition 1 can be found in Appendix B.

Proposition 2. Assume that f is positive, and satisfies
F3. Then cab(0) is decreasing in τ > 0 for all a, b with
0 < a ≤ b <∞ if and only if f satisfies F2.

We shall prove Proposition 2 in Appendix A. Propo-
sition 2 gives evidence for the fact that clustering incre-
ases as τ decreases, as confirmed in Fig. 3. More pre-
cisely, Proposition 2 shows the monotonicity of cab(0),
which is one of the factors of Cab(τ) in (23). The issue
of monotonicity of Cab(τ) is more delicate, since a and b
are function of τ themselves. In Appendix G we present
several other monotonicity properties of the remaining
building blocks that together give Cab(τ). It follows that
for τ > 2, Cab(τ) is bounded from above by an envelope
function of τ that is very close to Cab(τ) and that is decre-
asing in τ . Figure 2 provides empirical evidence for the
monotonicity of Cab(τ) in τ . This monotonicity seems
to conflict observations made in [9], where the clustering
coefficient of a hidden-variable model first increases in τ
when τ is close to 2, and then starts decreasing. The
difference is caused by the choice of the structural cutoff.
Where we take hs =

√
N〈h〉 with 〈h〉 as in (9), in [9]

hs =
√
N(τ − 1)/(τ − 2) was used. Thus, in [9], the

structural cutoff includes the infinite system size limit of
〈h〉, where we use the size-dependent version of 〈h〉.

Figure 3 suggests that C falls off with N according
to a function Nδ where δ depends on τ . In Proposi-
tion 3 below, we will show that for the F-class of hidden-
variable models and the standard cutoff levels, C decays
as Nτ−2 lnN . On a log-scale, moreover, the clustering
coefficient of different hidden-variable models in the F-
class only differs by a constant, which is confirmed in
Fig. 3 and substantiated in Proposition 4. Then, we will
focus in Section V on τ ≈ 2, for which Fig. 3 suggests
that the clustering remains nearly constant as a function
of N , and characterize how large a network should be for
C to start showing decay. This again will depend on τ .
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Figure 1. c(h) for τ = 2.1, 2.5, 2.9 and networks of size N =
106, using hmin = 1. The markers indicate the average of 105

simulations, and the solid lines follow from (17).
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Figure 2. Cmax
ab (τ) as a function of τ , with r as in (6), using

hmin = 1.

IV. UNIVERSAL BOUNDS

We next compute the clustering coefficient Cmax
ab (τ) =

Cab(τ) for the maximally dense graph with f(u) =
fmax(u) = min(1, 1/u), u ≥ 0 and a, b satisfying (21).
In this case we have cab(h) = cab(0) for h ≤ 1/(ab) =
h2s/hc = N〈h〉/hc. It is easy to see that fmax is the
maximal element in the F-class in the sense that f(u) ≤
fmax(u) for all u ≥ 0 and all f ∈ F. For a general f ∈ F

we shall also bound Cfab(τ) in terms of Cmax
ab (τ). This

yields a scaling relation similar to (13), but then for the
whole F-class. We start from an explicit representation
for Cmax

ab (τ):

Proposition 3.

Cmax
ab (τ) =

A(τ)(τ − 2)2

((ahmin)2−τ − b2−τ )
2 × I

max
ab (τ), (24)

103 104 105 106
10− 5

10− 4

10− 3

10− 2

10− 1

100

N

C

τ = 2 .1
τ = 2 .5
τ = 2 .9

Figure 3. Cab(τ) for τ = 2.1, 2.5, 2.9, choices (6) (solid line)
and (8) (dashed line) and networks of size N = 10k for k =
4, 5, 6, using hmin = 1. The markers indicate the average of
105 simulations, and the solid lines follow from (24) and (F2).

with A(τ) given in (23) and

Imax
ab (τ) =

ln(b2)

(τ − 2)(3− τ)
− 1− b2(2−τ)

(τ − 2)2

+
1− 2(ahminb)

3−τ + (ahmin)2(3−τ)

(3− τ)2
. (25)

In Appendix F we give the counterpart of (24) for the
maximally random graph (8) studied in [9], and show
that on a log-scale the leading asymptotics differs only
by a constant, so that the decay exponent describing how
the clustering decays with network size is the same. This
can also be seen in Fig. 3. In fact, for all functions f
in the F-class we show below that the decay exponent
is universal, and that the difference in constants can be
bounded.

When τ is away from 2 and 3, and b is large and a
is small, we can ignore the b2−τ in the front factor of
(24) and the second term in (25). Furthermore, ab =

O(N
2−τ
τ−1 ), so that we may ignore this factor in the third

term of (25). In this case we get the approximation

Cmax
ab (τ) ≈ A(τ)

τ − 2

3− τ
(ahmin)2(τ−2) ln(b2). (26)

Using the default choices for a and b from (10), (11)
and (20) then shows that Cmax

ab ∼ N2−τ ln(N) (ignoring
the constant). Proposition 3 can be used to find upper

and lower bounds for Cfab(τ) with general f ∈ F. Since
f(u) ≤ fmax(u), u ≥ 0, it follows from (23) that

Cfab(τ) ≤ Cmax
ab (τ). (27)

Proposition 4. For all u0 ≥ 1,

Cfab(τ) ≥ u0f(u0)Cmax
a0b0(τ), (28)

with a0 = a/
√
u0 and b0 = b/

√
u0.
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In particular, the choice u0 = 1 yields

Cfab(τ) ≥ f(1)Cmax
ab (τ), (29)

which together with (26) and (27) gives the large-network

behavior of Cfab(τ), when τ ∈ (2, 3) and away from 2 and
3, and a is small and b is large (up to a multiplicative con-
stant that is less interesting). In particular, this shows

that Cfab ∼ N2−τ ln(N) (again ignoring the constant).
The proofs of Propositions 3 and 4 can be found in Ap-
pendix C and D, respectively.

V. PERSISTENT CLUSTERING

In [9] it was observed that for values of the exponent
τ ≈ 2, clustering remains nearly constant up to extremely
large network sizes, which makes the convergence to the
thermodynamic limit extremely slow (as also observed
in [24, 25]). Here we now use the explicit results for
the maximally dense graph to characterize this rate of
convergence as a function of the network size N . For
convenience, we assume in this section that hmin = 1.

In view of the lower and upper bounds obtained in

Section IV for Cfab(τ) with general f ∈ F in terms of
Cmax
ab (τ) = Cab(τ), it suffices to consider Cmax

ab (τ) for
τ close to 2. In Appendix E we show that when τ is
close to 2 and

∣∣ln(ab)/ ln(b2)
∣∣ is small, Cmax

ab (τ) can be
approximated by

Cmax
ab (τ) ≈

A(τ)(1− 1
3 (τ − 2) ln(b2))

2(1− 1
2 (τ − 2) ln(ab) + 1

6 (τ − 2)2 ln2 b)2
.

(30)

It is the term − 1
3 (τ − 2) ln(b2) in the numerator and

the term 1
6 (τ − 2)2 ln2 b in the denominator (the term

1
2 (τ − 2) ln(ab) being less important) of the right-hand
side of (30) that are the main influencers for when
Cmax
ab (τ) starts to decay. The decay is certainly absent

as long as the numerator 1− 1
3 (τ − 2) ln(b2) is away from

zero.
We then apply this reasoning to the canonical choices

hs =
√
N〈h〉 and hc = (N〈h〉)1/(τ−1), for which

b = (N〈h〉)
3−τ

2(τ−1) , ab = (N〈h〉)−
τ−2
τ−1 , (31)

ensuring
∣∣ln(ab)/ ln(b2)

∣∣ = (τ − 2)/(τ − 3) to be small
indeed. Then, choosing a threshold t ∈ (0, 3) and solving
N from

(τ − 2) ln(b2) = t, (32)

we get

N〈h〉 = exp

(
τ − 1

(τ − 2)(3− τ)
t

)
. (33)

In Table I we consider the case that t = 2 and use that 〈h〉
can accurately be bounded above by lnN when hmin = 1

104 108 1012 1016 1020 1024 1028

10−7

10−5

10−3

10−1

N

C

τ =2.3
τ =2.2
τ =2.1
τ =2.05

Figure 4. Cmax
ab (τ) as a function of N for τ close to 2, with

r(u) as in (6) and hmin = 1. The marks indicate the value of
Nτ,2 as calculated in Table I.

τ Nτ,2
2.3 2.37 · 104

2.2 2.62 · 105

2.1 1.93 · 109

2.05 3.92 · 1017

Table I. Solution Nτ,t to (τ − 2) ln(b2) = 2.

and τ is close to 2, and we let Nτ,2 be such that N lnN
equals the right-hand side of (33). For τ = 2.1, the value
of N where the clustering starts to decay is much larger
than the typical size of real-world network data sets. This
supports the observation that clustering is persistent for
τ close to 2. Figure 4 shows the decay of the clustering
coefficient for τ ≈ 2, together with Nτ,2, the value where
the clustering coefficient is expected to decay. We see
that for τ very close to 2, clustering indeed barely decays
for N smaller than Nτ,2. On the other hand, we see that
for τ = 2.2 and τ = 2.3 the decay already starts before
Nτ,2, so there the approximation is less accurate.

VI. OUTLOOK

For hidden-variable models with scale-free degree dis-
tributions and connection probabilities in the F-class, we
have shown that the local clustering coefficient c(h) de-
cays with the hidden variable h and that the average
clustering coefficient C(τ) roughly decreases with the tail
exponent τ according to some function that depends on
the structural and natural cutoffs. For the typical cutoff
choices

√
N and N1/(τ−1) this showed that C decays as

N2−τ lnN , confirming an earlier result in [9] and sugges-
ting universal behavior for the entire F-class introduced
in this paper. By analyzing the special case of maximally
dense graphs, a member of the F-class, we estimated the
constant C(τ)/N2−τ lnN and the extremely slow decay
that occurs when τ ↓ 2.
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The hidden-variable model is a widely adopted null
model, not only because of its ability to generate inhomo-
geneous random graphs, but also because of recent work
that uses the hidden-variable model for constructing geo-
metric versions of random graphs [26]. Here, the common
thread is to equip every vertex not only with a weight,
but also with a randomly chosen position in some space.
Two vertices then form an edge independently with a
probability that is proportional to the product of their
weights and inversely proportional to some power of their
Euclidian distance, that gives rise to a class of connection
probabilities that generalizes the F-class with a geome-
tric feature. It would be interesting to use the methods
developed in this paper to investigate the clustering in
relation to cutoffs and tail exponent in these graphs with
an underlying geometry.

Another possible thread is to compare clustering in
the hidden-variable model with clustering in other null
models, like the configuration model (CM). For any gi-
ven real-world network, the CM preserves the degree
distribution P (k), and makes connections between ver-
tices in the most random way possible [1–4, 15, 16]. Gi-
ven the random nature of the edge assignment, the CM
has in principle no degree correlations. But in case of
scale-free networks with diverging second moment, this
random assignment leads to uncorrelated networks with
non-negligible fractions of self-loops (a vertex joined to
itself) and multiple connections (two vertices connected
by more than one edge). This could be avoided by for-
bidding self-loops and multiple edges, for instance by ge-

nerating a sample from the CM and then erasing all the
self-loops and multiple edges. This comes at the cost,
however, of introducing non-trivial degree correlations
among vertices.

In future work we want to investigate the clustering in
such erased configuration models. Hidden-variable mo-
dels are soft models, where unlike hard models such as
the (erased) CM, graph constraints are satisfied only on
average. Soft models are probabilistically more tractable
because of the weak dependence structures, which ma-
kes it is easier to show model properties. Transferring
results for soft models to hard models is not straightfor-
ward, and the question is whether the important cluste-
ring properties are asymptotically invariant to the soft
and hard constraints in the large-network limit. If this
is the case, then that would extend the universality class
from hidden-variable models in the F-class to a larger
class of random network models with single-edge con-
straints.
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Appendix A: Proof of Proposition 2

We consider

cab(0) = Dab(τ) =

∫ b
a

∫ b
a
f(xy)(xy)2−τdxdy(∫ b
a
x1−τdx

)2 , (A1)

where we have written the lower integration limit ahmin

in (24) as a for notational convenience. We fix N , and
study the dependence of Dab(τ) on τ . We assume here
that a and b are fixed, and do not depend on τ . Assume
that f is positive and satisfies F2 and F3. We have for
D′ab(τ) = d

dτDab(τ),

D′ab(τ) =
−
∫ b
a

∫ b
a
f(xy) ln(xy)(xy)2−τdxdy( ∫ b

a
x1−τdx

)2
+

2
∫ b
a

∫ b
a
f(xy)(xy)2−τdxdy

∫ b
a
x1−τ lnxdx( ∫ b

a
x1−τdx

)3 . (A2)

Observe that D′ab(τ) ≤ 0 if and only if∫ b
a

∫ b
a
f(xy) ln(xy)(xy)2−τdxdy∫ b

a

∫ b
a
f(xy)(xy)2−τdxdy

≥ 2

∫ b
a
x1−τ lnx dx∫ b
a
x1−τdx

.

(A3)

Symmetry of f(xy)/(xy)τ−2 and ln(xy) = lnx+ln y gives∫ b

a

∫ b

a

f(xy) ln(xy)(xy)2−τdxdy

= 2

∫ b

a

lnx
(∫ b

a

f(xy)(xy)2−τdy
)

dx. (A4)

Letting

W (x) =

∫ b
a
f(xy)(xy)2−τdy∫ b

a

∫ b
a
f(vy)(vy)2−τdvdy

, a ≤ x ≤ b, (A5)

V (x) =
x1−τ∫ b

a
v1−τdv

, a ≤ x ≤ b, (A6)

we thus need to show that∫ b

a

lnx W (x)dx ≥
∫ b

a

lnx V (x)dx. (A7)

Observe that

xτ−1
∫ b

a

f(xy)(xy)2−τdy =

∫ b

a

(xyf(xy)) y1−τdy,

(A8)

which increases in x > 0 when f satisfies F2. Therefore,
W (x)/V (x) increases in x > 0 when f satisfies F2. Furt-
hermore, lnx increases in x > 0, so the inequality in (A7)
follows from the following lemma:

Lemma A.1. Let 0 < a < b and assume that p(x) and
q(x) are two positive, continuous probability distribution
functions (pdf’s) on [a, b] such that p(x)/q(x) is increa-
sing in x ∈ [a, b]. Let g(x) be an increasing function of
x ∈ [a, b]. Then

gp =

∫ b

a

g(x)p(x)dx ≥
∫ b

a

g(x)q(x)dx = gq. (A9)

Proof. For any R ∈ R,

gp − gq =

∫ b

a

(g(x)− gq)(p(x)−Rq(x))dx, (A10)

since p and q are pdf’s. Let xq be a point in [a, b] such
that g(x) ≤ gq when x ≤ xq and g(x) ≥ gq when x ≥ xq.
Choose R = p(xq)/q(xq), so that by monotonicity of g
and p/q, there are the logical representations

a ≤ x ≤ xq ⇒ (g(x)− g(xq) ≤ 0 ∧ p(x)−Rq(x) ≤ 0) ,

xq ≤ x ≤ b⇒ (g(x)− g(xq) ≥ 0 ∧ p(x)−Rq(x) ≥ 0) .

Hence, the integrand in (A10) is everywhere nonnegative,
so that gp − gq ≥ 0 as required.

Remark A.1. The following observation will prove use-
ful later: (i) The inequality in (A9) is strict when both
g(x) and p(x)/q(x) are strictly increasing. (ii) When g(x)
is (strictly) decreasing and p(x)/q(x) is (strictly) increa-
sing, there is ≤ (<) rather than ≥ (>) in (A9).

Now that we have shown F2 to be a sufficient condition
for Dab(τ) to be increasing, we next show that F2 is also
a necessary condition. Suppose we have two points u1
and u2 with 0 < u1 < u2 such that u1f(u1) > u2f(u2).
Since f is continuous and piecewise continuous differen-
tiable, there is a u0 ∈ (u1, u2) and ε > 0 such that
uf(u) is strictly decreasing in u ∈ [u0 − ε, u0 + ε].
In (A8), take a =

√
u0 − ε and b =

√
u0 + ε so that

xy ∈ [u0 − ε, u0 + ε] when xy ∈ [a, b]. Therefore,
W (x)/V (x) is strictly decreasing in x ∈ [a, b]. By the
version of Lemma A.1 with g(x) = lnx strictly increa-
sing and p(x)/q(x) = W (x)/V (x) strictly decreasing, we
see that gp − gq < 0. Therefore, we have (A7) with <
instead of ≥, and so D′ab(τ) is positive for all τ with this
particular choice of a and b. This completes the proof of
Proposition 2(i).

Appendix B: Proof of Proposition 1

We consider for a fixed a, b, τ and h > 0,

cab(h) =

∫ b
a

∫ b
a

(xy)2−τf(ahx)f(ahy)f(xy)dxdy( ∫ b
a
x1−τf(ahx)dx

)2 . (B1)
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Observe that d
dhcab(h) ≤ 0 if and only if

d
dh

[ ∫ b
a

∫ b
a

(xy)2−τf(ahx)f(ahy)f(xy)dxdy
]

∫ b
a

∫ b
a

(xy)2−τf(ahx)f(ahy)f(xy)dxdy
(B2)

≤ 2

d
dh

[ ∫ b
a
f(ahx)x1−τdx

]
∫ b
a
f(ahx)x1−τdx

. (B3)

Using

d

dh
[f(ahx)f(ahy)] = axf ′(ahx)f(ahy) + ayf(ahx)f ′(ahy)

(B4)

and the symmetry of the function f(xy)/(xy)τ−2 gives

d

dh

[ ∫ b

a

∫ b

a

f(ahx)f(ahy)f(xy)(xy)2−τdxdy
]

= 2

∫ b

a

∫ b

a

axf ′(ahx)f(ahy)f(xy)(xy)2−τdxdy.

(B5)

Also,

d

dh

[ ∫ b

a

f(ahx)x1−τdx] =

∫ b

a

axf ′(ahx)x1−τdx. (B6)

So we write the left-hand side of (B2) as

2

∫ b

a

axf ′(ahx)

f(ahx)
T (x)dx, (B7)

and the right-hand side of (B2) as

2

∫ b

a

axf ′(ahx)

f(ahx)
U(x)dx, (B8)

where the pdf’s T (x) and U(x) on [a, b] are defined as

T (x) =
f(ahx)

∫ b
a
f(ahy)f(xy)(xy)2−τdy∫ b

a

∫ b
a
f(ahv)f(ahy)f(vy)(vy)2−τdvdy

(B9)

and

U(x) =
f(ahx)x1−τ∫ b

a
f(ahv)v1−τdv

. (B10)

The inequality in (B2) thus becomes∫ b

a

−ahxf ′(ahx)

f(ahx)
T (x)dx ≥

∫ b

a

−ahxf ′(ahx)

f(ahx)
U(x)dx,

(B11)

where we have multiplied by h > 0. Assume that f
satisfies F2. Then

xτ−1
∫ b

a

f(ahy)f(xy)(xy)2−τdy

=

∫ b

a

xyf(ahy)f(xy)y1−τdy (B12)

is increasing in x > 0. Therefore, see (B9) and (B10),
T (x)/U(x) is increasing in x > 0. Hence, from Lemma
A.1 we get (B11) when g(x) = −ahxf ′(ahx)/f(ahx) is
increasing in x > 0, i.e. when f satisfies F4.

We have now shown that when f satisfies F1-F3, the
condition F4 is sufficient for cab(h) to be decreasing in
h > 0. For the result in the converse direction we argue
as follows. The function uf(u) is continuous, piecewise
smooth, increasing and not constant, and so there is a
u0 > 0, ε > 0 such that uf(u) is strictly increasing in
u ∈ [u0−ε, u0+ε]. Let z(v) = −vf ′(v)/f(v), and assume
there are 0 < v1 < v2 such that z(v1) > z(v2). We may
assume that z is continuous at v = v1, v2. Indeed, when
z is discontinuous at v1 say, z(v1) = 1

2 (z(v1 + 0) + z(v2−
0)) and so at least one of z(v1 − 0) = limv↑v1 z(v) and
z(v1 + 0) = limv↓v1 z(v) is larger than z(v2). Since z has
only finitely many discontinuities, it suffices to decrease
or increase v1 somewhat, to a point of continuity, while
maintaining z(v1) > z(v2). We have to consider two
cases.

A. Assume that z(v) is continuous on [v1, v2]. We can
then basically argue as in the proof of the only-if part
of Proposition 2. Thus, there is a v0 > 0, δ > 0 such
that z(v) is strictly decreasing in v ∈ [v0 − δ, v0 + δ]. We
choose a, b such that xy ∈ [u0 − ε, u0 + ε] when x, y ∈
[a, b]. This is satisfied when (u0 − ε)1/2 ≤ a < b ≤
(u0 + ε)1/2, and it guarantees that T (x)/U(x) is strictly
increasing in x ∈ [a, b]. Next, we choose h such that
ahx ∈ [v0 − δ, v0 + δ] when x ∈ [a, b], so that z(ahx) is
strictly decreasing in x ∈ [a, b]. For this, we need to take
h such that a2h ≥ v0 − δ and abh ≤ v0 + δ. This can be
done indeed when a/b ≥ (v0−δ)/(v0+δ. Choosing a and
b with a < b, a, b ∈ [(u0−ε)1/2, (u0+ε)1/2] such that this
latter condition is satisfied, we can apply the version of
Lemma A.1 with strictly decreasing g(x) = z(ahx) and
strictly increasing p(x)/q(x) = T (x)/U(x). Thus we get
in (B11) strict inequality < for these a, b and h, and this
means that c′ab(h) < 0. This proves Proposition 1 for this
case.

B. Assume that z(v) has discontinuities on [v1, v2], say
at c1 < c2 < · · · < cj with v1 < c1 and v2 > cj . In the
case that there is an interval [v0 − δ, v0 + δ] contained
in one of (v1, c1), (c1, c2), . . . , (cj , v2) where z is strictly
decreasing, we are in the position of case A, and then
we are done. Otherwise, we have by F3 that z′(v) ≥ 0
for all v ∈ [v1, v2], v 6= c1, . . . , cj . Then we must have
z(v0 − 0) > z(v0 + 0) for at least one v0 = c1, . . . , cj , for
else we would have z(v1) ≤ z(c1 − 0) ≤ z(c1 + 0) ≤ · · · ≤
z(cj − 0) ≤ z(cj + 0) ≤ z(v2).

We want to find a, b such that∫ b

a

z(ahx)T (x)dx <

∫ b

a

z(ahx)U(x)dx (B13)

for the case that z(v) has a downward jump at v = v0 > 0
while being increasing to the left and to the right of v0.
Set

∆ = z(v0−0)−z(v0+0), M = 1
2 (z(v0 − 0) + z(v0 + 0)) ,

(B14)
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and observe that M ≥ 1
2∆ > 0 since z(v) ≥ 0 for all v.

We can find δ > 0 such that

z(v0 − 0) ≥ z(v) ≥ z(v0 − 0)− 1
8∆, v0 − δ ≤ v < v0

(B15)

z(v0 + 0) ≤ z(v) ≤ z(v0 + 0) + 1
8∆, v0 < v ≤ v0 + δ.

(B16)

Next, let

l(v) = f(v)v1−τ , v > 0, (B17)

and observe that l(v) is positive and continuous at v =
v0. Hence, we can choose δ > 0 such that, in addition
to (B15) and (B16),∣∣∣∣ l(v)

l(v0)
− 1

∣∣∣∣ ≤ λ, v ∈ [v0 − δ, v0 + δ], (B18)

where λ is any number between 0 and 5
16∆/(2M + 7

16∆).
As in case A of the proof, we choose a, b and h such that

xy ∈ [u0 − ε, u0 + ε], (B19)

when x, y ∈ [a, b] and

ahx ∈ [v0 − δ, v0 + δ], (B20)

when x ∈ [a, b]. Thus, we let (u0 − ε)1/2 ≤ a < b ≤
(u0 + ε)1/2 such that 1 > a/b ≥ (v0− δ)/(v0 + δ). Below,
we shall transform the two integrals by the substitution
v = ah0x for a special choice of h = h0 to an integral
over an interval [w1, w2] having v0 as midpoint. This h0
is given by

h0 =
2v0

a2 + ab
∈
[
v0 − δ
a2

,
v0 + δ

ab

]
. (B21)

Indeed, this h0 satisfies (B20) since

2v0
a2 + ab

≤ v0 + δ

ab
⇐⇒ 2bv0 ≤ (b+ a)(v0 + δ)

⇐⇒ (1− a

b
)v0 ≤ (1 +

a

b
)δ

⇐⇒ a

b
≥ v0 − δ
v0 + δ

, (B22)

and

2v0
a2 + ab

≥ v0 − δ
ab

⇐⇒ 2av0 ≤ (b+ a)(v0 − δ)

⇐⇒ (
a

b
− 1)v0 ≥ −(1 +

a

b
)δ

⇐⇒ a

b
≥ v0 − δ
v0 + δ

. (B23)

In the integrals in the inequality in (B13) with h = h0,
we substitute ah0x = v, and the inequality to be proved
becomes

zt :=

∫ w2

w1

z(v)t(v)dv <

∫ w2

w1

z(v)u(v)dv =: zu. (B24)

Here

w1 = a2h0, w2 = abh0 (B25)

so that v0 = 1
2 (a2 + ab)h0 is the midpoint of the integra-

tion interval [w1, w2] ⊂ [v0− δ, v0 + δ], and t(v) and u(v)
are the pdf’s

t(v) =
1

ah0
T

(
v

ah0

)
, u(v) =

1

ah0
U

(
v

ah0

)
(B26)

for which t(v)/u(v) is strictly increasing in v ∈ [w1, w2].
We shall show that zu ∈ (M − 3

8∆,M + 3
8∆), and so,

by (B15) and (B16),

z(v)−zu > 0, w1 ≤ v < v0; z(v)−zu < 0, v0 < v ≤ w2.
(B27)

With R = t(v0)/u(v0), this implies that

zt − zu =

∫ w2

w1

(z(v)− zu)(t(v)−Ru(v))dv < 0, (B28)

since the integrand is negative for all v 6= v0.
To show that zu ∈ (M− 3

8∆,M+ 3
8∆), we note that the

pdf u(v) is built from the function l(v) in (B17) via (A10)
and (B26). In terms of this l(v) we can write zu as

zu =

∫ w2

w1
z(v)l(v)dv∫ w2

w1
l(v)dv

. (B29)

Now, by (B18),

(w2−w1)l(v0)(1−λ) ≤
∫ w2

w1

l(v)dv ≤ (w2−w1)(1+λ)l(v0).

(B30)
Also, by (B15), (B16) and (B18) and the fact that v0 =
1
2 (w1 + w2),∫ w2

w1

z(v)l(v)dv =

∫ v0

w

z(v)l(v)dv +

∫ z

v0

z(v)l(v)dv

≤ z(v0 − 0)

∫ v0

w

l(v)dv

+ z(v0 + 1
8∆)

∫ z

v0

l(v)dv

≤ 1
2 (w2 − w1)(1 + λ)l(v0)

·
[
z(v0 − 0) + z(v0 + 0) + 1

8∆
]

= (w2 − w1)(1 + λ)l(v0)
[
M + 1

16∆
]
,

(B31)
and in a similar fashion∫ w2

w1

z(v)l(v)dv ≥ (w2 − w1)(1− λ)l(v0)
[
M − 1

16∆
]
.

(B32)
From (B30), (B31) and (B32) we then get

1− λ
1 + λ

(M − 1
16∆) ≤ zu ≤

1 + λ

1− λ
(M + 1

16∆). (B33)
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Now

1 + λ

1− λ
(M + 1

16∆) < M + 3
8∆ ⇐⇒ λ <

5
16∆

2M + 7
16∆

,

1− λ
1 + λ

(M − 1
16∆) < M + 3

8∆ ⇐⇒ λ <
5
16∆

2M − 7
16∆

.

Then it follows from the choice of λ in (B18) that zu ∈
(M − 3

8∆,M + 3
8∆) for such λ.

Appendix C: Proof of Proposition 3

Taking the limit h ↓ 0 in (22), with r(u) =
umin(1, 1/u), we have

cmax
ab (0) =

∫ b
a

∫ b
a

(xy)2−τ min(1, (xy)−1)dxdy[∫ b
a
x1−τdx

]2 , (C1)

where we have written a instead of ahmin for ease of no-
tation. The denominator in (C1) is evaluated as(∫ b

a

x1−τdx
)2

=
1

(τ − 2)2
(
a2−τ − b2−τ

)2
. (C2)

For the numerator in (C1) we compute∫ b

a

∫ b

a

min(1, (xy)−1)(xy)2−τdxdy

=

∫ 1/b

a

∫ b

a

(xy)2−τdydx

+

∫ b

1/b

(∫ 1/x

a

(xy)2−τdy +

∫ b

1/x

(xy)1−τdy

)
dx

=

∫ 1/b

a

x2−τdx

∫ b

a

y2−τdy +

∫ b

1/b

x2−τ
∫ 1/x

a

y2−τdydx

+

∫ b

1/b

x1−τ
∫ b

1/x

y1−τdydx

=
(bτ−3 − a3−τ )(b3−τ − a3−τ )

(3− τ)2

+
1

3− τ

∫ b

1/b

x2−τ (xτ−3 − a3−τ )dx

+
1

2− τ

∫ b

1/b

x1−τ (b2−τ − xτ−2)dx

=
(bτ−3 − a3−τ )(b3−τ − a3−τ )

(3− τ)2

+
1

3− τ

(
ln(b2)− a3−τ (b3−τ − bτ−3)

3− τ

)
+

1

2− τ

(
b2−τ (b2−τ − bτ−2)

2− τ
− ln(b2)

)
=

ln(b2)

(3− τ)(τ − 2)
− 1− b2(2−τ)

(2− τ)2
+

1− 2(ab)3−τ + a2(3−τ)

(3− τ)2
.

(C3)

The last member of (C3) equals Imax
ab (τ) in (25), and the

result follows from (23), (C1), (C2) and (C3).

Appendix D: Proof of Proposition 4

Take u0 ≥ 1 and note that

f(u) ≥ u0f(u0) min(u−10 , u−1), u ≥ 0, (D1)

since, for f ∈ F,

f(u) ≥ f(u0), 0 ≤ u ≤ u0; uf(u) ≥ u0f(u0), u ≥ u0.
(D2)

Now for any c > 0,∫ b

a

∫ b

a

min(c, (xy)−1)(xy)2−τdxdy

= cτ−2
∫ b
√
c

a
√
c

∫ b
√
c

a
√
c

min(1, (xy)−1)(xy)2−τdxdy

= cτ−2Imax;a
√
c,b
√
c(τ). (D3)

Also,

(τ − 2)2

(a2−τ − b2−τ )
2 = cτ−2

(τ − 2)2

((a
√
c)2−τ − (b

√
c)2−τ )

2 . (D4)

The result then follows from combining (D1), (D3) and
(D4).

Appendix E: Derivation of Equation (30)

We shall derive (30) assuming (21) and that∣∣ln(ab)/ ln(b2)
∣∣ is small. In the present case, where a and

b are given through (10), (11) and (20) with hmin = 1,
this indeed holds since

∣∣ln(ab)/ ln(b2)
∣∣ = (τ − 2)/(3− τ).

With s = τ − 2 we consider

Cmax
ab (τ) =

s2

(a−s − b−s)2
[ ln(b2)

s(1− s)
− 1− b−2s

s2

+
1− 2(ab)1−s + a2(1−s)

(1− s)2
]
, (E1)

where we have written a instead of ahmin for notatio-
nal convenience. We develop, assuming s ln(b2) of order
unity and less,

ln(b2)

s(1− s)
− 1− b−2s

s2
+

1− 2(ab)1−s + a2(1−s)

(1− s)2

= 1
2 ln2 b2

(
1− 1

3s ln(b2) + . . .+O((ln2 b2)−1)
)
. (E2)

Also,

a−s − b−s

s
= ln(b/a)

[
1− 1

2s ln(ab)

+ 1
6s

2
(
ln2 b+ ln b ln a+ ln2 a

)
− . . .

]
.

(E3)
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Note that

ln(b/a) = ln(b2)− ln(ab) = ln(b2)
(

1− ln(ab)

ln(b2)

)
, (E4)

ln2 b+ ln b ln a+ ln2 a = ln2 b
(

1− ln(ab)

ln b
+
( ln(ab)

ln b

)2)
.

(E5)

Thus we get

a−s − b−s

s
= ln(b2)

(
1− ln(ab)

ln(b2)

)(
1− 1

2s ln(ab)

+ 1
6s

2 ln2 b
(

1 +O
( ln(ab)

ln b

)))
≈ ln(b2)

[
1− 1

2s ln(ab) + 1
6s

2 ln2 b
]
, (E6)

where we have used the assumption that | ln(ab)/ ln b| is
small.

When we insert (E2) and (E6) into (E1) and divide
through ln2(b2), we arrive at (30).

Appendix F: Maximally random graph

Define Lerch’s transcendent

Φ(z, s, v) =

∞∑
k=0

zk

(k + v)s
. (F1)

In [9] it was shown that for the maximally random graph
(8)

Cab(τ) =
(τ − 2)2

(a2−τ − b2−τ )
2

{ π ln(b2)

sinπ(τ − 2)
− π2 cosπ(τ − 2)

(sinπ(τ − 2))
2

+ b−2(τ−2)Φ(−b−2, 2, τ − 2)

+ a2(3−τ)Φ
(
−a2, 2, 3− τ

)
− 2(ab)3−τΦ (−ab, 2, 3− τ)

}
. (F2)

(The expression is slightly simplified compared to [9,
Eq. (5)].) Comparing (F2) and (24) shows that the front
factor is identical, and that the terms in between brackets
differ. Table II compares the two dominant terms in (F2)
and (24) and shows that these terms are of comparable
magnitude for τ − 2 small.

Appendix G: Monotonicity properties for Cab(τ)

In this appendix we show that Cab(τ) is bounded from
above by a closely related function that decreases in τ .
Notice that Proposition 2 assumes a and b fixed. We
have from (22) and (10), (11) that

a = a(τ) =

(
1

N〈h〉

)1/2

, b = b(τ) = (N〈h〉)
3−τ

2(τ−1)

(G1)

s π
sinπs

1
s(1−s)

π2 cosπs
(sinπs)2

1
s2
− 1

(1−s)2

0.1 10.1664 11.1111 98.2972 98.7654
0.2 5.3448 6.2500 23.1111 23.4375
0.3 3.8832 4.7619 8.8635 9.0703
0.4 3.3033 4.1666 3.3719 3.4722
0.5 3.1416 4.0000 0.0000 0.0000

Table II. Dominant terms in (F2) and (24) for several values
of s = τ − 2.

where 〈h〉 is given in (9). Below we shall use that 〈h〉
decreases in τ ∈ (2, 3]; this is clear intuitively and can be
proved rigorously by using Lemma A.1. We have

Cab(τ) = A(τ)G(τ, a(τ), b(τ)), (G2)

where

A(τ) =

∫ N

hmin

ρ(h)(1− (1 + h)e−h)dh, (G3)

with density ρ(h) = Ch−τ on [hmin, N ] and

G(τ, a, b) =

∫ b
ahmin

∫ b
ahmin

(xy)2−τf(xy)dxdy(∫ b
ahmin

x1−τdx
)2 . (G4)

Proposition 2 says that

(i) G decreases in τ (when a and b are fixed).

With the method of the proof of Proposition 2 in Appen-
dix A, we will show that

(ii) A decreases in τ ,

(iii) G increases in a and in b.

Showing that G(τ, a(τ), b(τ)) decreases in τ is compli-
cated by the facts that a(τ) increases in τ , see(iii), and
that the dependence of a(τ) and b(τ) on τ is rather in-
volved. Let m and M be the minimum and maximum,
respectively, of 〈h〉 when τ ∈ [2, 3] (m = 〈h〉 |h=3≈ 2hmin,
M = 〈h〉 |τ↓2≈ hmin ln(N/hmin) from (9) and the mono-
tonicity of 〈h〉). Letting

ā := (Nm)
−1/2

, b̄(τ) = (NM)
3−τ

2(τ−1) , (G5)

we have a(τ) ≤ ā, b(τ) ≤ b̄(τ), and so by (iii)

G(τ, a(τ), b(τ)) ≤ G(τ, ā, b̄(τ)). (G6)

The right-hand side of (G6) decreases in τ by (i) and (iii)
and the fact that b̄(τ) decreases in τ . Therefore, Cab(τ)
in (G2) is bounded above by a closely related function
that does decrease in τ .

We have shown that G(τ, a, b) decreases in τ ∈ [2, 3].
We shall show now that

(ii) A decreases in τ and increases in l,
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(iii) G increases in a and in b.

Proof that A decreases in τ . Since d
dτ h
−τ = −h−τ lnh,

we have

∂A

∂τ
≤ 0

⇐⇒
∫ N

hmin

−h−τ (1− (1 + h)e−h) lnhdh

∫ N

hmin

h−τdh

−
∫ N

hmin

h−τ (1− (1 + h)e−h)dh

∫ N

hmin

−hh−τ lnhdh ≤ 0

⇐⇒
∫ N
hmin

h−τ (1− (1 + h)e−h) lnhdh∫ N
hmin

h−τ (1− (1 + h)e−h)dh

≥
∫ N
hmin

h−τ lnhdh∫ N
hmin

h−τdh
.

(G7)
Consider on [hmin, N ] the pdf’s

p(h) =
h−τ (1− (1 + h)e−h)∫ N

hmin
h−τ1 (1− (1 + h1)e−h1)dh1

, (G8)

q(h) =
h−τ∫ N

hmin
h−τ1 dh1

= ρ(h). (G9)

Clearly p(h)/q(h) = C(1 − (1 + h)e−h) with C indepen-
dent of h ∈ [hmin, N ]. Hence, p(h)/q(h) is increasing in
[hmin, N ]. Also, ln(h) = g(h) is increasing in [hmin, N ].
Hence, by Lemma A.1,∫ N

hmin

g(h)p(h)dh ≥
∫ N

hmin

g(h)q(h)dh, (G10)

and this is the last inequality in (G7).

Proof that G increases in b. Again, for notational sim-
plicity, we write a and b instead of ahmin and bhmin re-
spectively. Let τ and a be fixed, and set

p(x, y) = (xy)2−τf(xy), P (b, y) =

∫ b

a

p(x, y)dx.

(G11)
We have

d

db

[∫ b

a

∫ b

a

(xy)2−τf(xy)dxdy

]
=

d

db

[∫ b

a

P (b, y)dy

]

= P (b, b) +

∫ b

a

∂P

∂b
(b, y)dy

=

∫ b

a

p(x, b)dx+

∫ b

a

p(b, y)dy = 2

∫ b

a

p(x, b)dx

= 2

∫ b

a

(xb)2−τf(xb)dx

(G12)
because of symmetry of p(x, y). Also,

d

db

(∫ b

a

x1−τdx

)2

= 2b1−τ
∫ b

a

x1−τdx. (G13)

Therefore,

∂G

∂b
≥ 0

⇐⇒ 2

∫ b

a

(xb)2−τf(xb)dx

(∫ b

a

x1−τdx

)2

− 2

∫ b

a

∫ b

a

(xy)2−τf(xy)dxdyb1−τ b1−τ
∫ b

a

x1−τdx ≥ 0

⇐⇒
∫ b
a

(xb)2−τf(xb)dx∫ b
a

∫ b
a

(xy)2−τf(xy)dxdy
≥ b1−τ∫ b

a
x1−τdx

⇐⇒ W (b) ≥ V (b),
(G14)

where W (x) and V (x) are the pdf’s as defined in (A5)
and (A6). Since W (x)/V (x) increases in x ∈ [a, b], we
get

1 =

∫ b

a

W (x)dx =

∫ b

a

W (x)

V (x)
V (x)dx

≤ W (b)

V (b)

∫ b

a

V (x)dx =
W (b)

V (b)
, (G15)

and this gives the last inequality in (G14).

Proof that G increases in a. This proof is very similar to
the proof that G increases in b. Let τ and b be fixed. We
now have

d

da

[∫ b

a

∫ b

a

(xy)2−τf(xy)dxdy

]
= −2

∫ b

a

(xa)2−τf(xa)dx,

(G16)
and

d

da

(∫ b

a

x1−τdx

)2

= −2a1−τ
∫ b

a

x1−τdx. (G17)

Then, as in (G14),

∂G

∂a
≥ 0 ⇐⇒

∫ b
a

(xa)2−τf(xa)dx∫ b
a

∫ b
a

(xy)2−τf(xy)dxdy
≤ a1−τ∫ b

a
x1−τdx

⇐⇒ W (a) ≤ V (a),
(G18)

and the inequality follows again from increasingness of
W (x)/V (x).

Appendix H: Choice of the natural cutoff

We consider random variables hi, i = 1, . . . , N , that
are i.i.d. with density p(h) = Ch−τ , hmin ≤ h < ∞. We
have

E[max
i
hi] = hminΓ

(
τ − 2

τ − 1

)
Γ(N + 1)

Γ
(
N + τ−2

τ−1

)
≈ hminΓ

(
τ − 2

τ − 1

)
N

1
τ−1 . (H1)
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The first identity in (H1) is exact, and follows from

E[max
i
hi] =

∫ ∞
hmin

hd
[
PN (h ≤ h)

]
=

∫ ∞
hmin

hd
[
(1− P(h > h))N

]
=

∫ ∞
hmin

hd

(1−
(

h

hmin

)1−τ)N , (H2)

using the substitution t = (h/hmin)1−τ ∈ (0, 1] and the
expression of the B-function in terms of the Γ function.
The approximate identity in (H1) follows from Γ(n +
a)/Γ(n+ b) ≈ na−b, which is quite accurate when a, b ∈
[0, 1] and n large.

Next, there is for 2 ≤ τ ≤ 3 the inequality(
τ − 1

τ − 2

) 1
τ−1

≤ Γ

(
τ − 2

τ − 1

)
≤ 4

3

(
τ − 1

τ − 2

) 1
τ−1

. (H3)

This inequality follows from

uu ≤ Γ(1 + u) = uΓ(u) ≤ 4
3u

u, (H4)

with u = (τ − 2)/(τ − 1) ∈ (0, 12 ] that can be shown
by considering the concave function ln(Γ(1 + u))− u lnu
which vanishes at u = 0, 1 and is positive at u = 1

2 (the
upper bound in (H4) follows from a numerical inspection
of this function).

Then from (H3) we get, using 〈h〉 = hmin(τ−1)/(τ−2),

h
τ−2
τ−1

min (N〈h〉)
1

τ−1 ≤ hminΓ

(
τ − 2

τ − 1

)
N

1
τ−1

≤ 4
3h

τ−2
τ−1

min (N〈h〉)
1

τ−1 , (H5)

showing that the order of magnitude of E[maxi hi] is
(N〈h〉)1/(τ−1). This motivates our choice of hc in (11).
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