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Real-world networks often have power-law degrees and scale-free properties such as ultra-small
distances and ultra-fast information spreading. In this paper, we study a third universal property:
three-point correlations that suppress the creation of triangles and signal the presence of hierarchy.
We quantify this property in terms of c̄(k), the probability that two neighbors of a degree-k node
are neighbors themselves. We investigate how the clustering spectrum k 7→ c̄(k) scales with k in
the hidden variable model and show that c(k) follows a universal curve that consists of three k-
ranges where c̄(k) remains flat, starts declining, and eventually settles on a power law c̄(k) ∼ k−α

with α depending on the power law of the degree distribution. We test these results against ten
contemporary real-world networks and explain analytically why the universal curve properties only
reveal themselves in large networks.

I. INTRODUCTION

Most real-world networks have power-law degrees, so
that the proportion of nodes having k neighbors scales
as k−τ with exponent τ between 2 and 3 [1–4]. Power-
law degrees imply various intriguing scale-free network
properties, such as ultra-small distances [5, 6] and the
absence of percolation thresholds when τ < 3 [7, 8]. Em-
pirical evidence has been matched by random graph null
models that are able to explain mathematically why and
how these properties arise. This paper deals with another
fundamental property observed in many scale-free net-
works related to three-point correlations that suppress
the creation of triangles and signal the presence of hierar-
chy. We quantify this property in terms of the clustering
spectrum, the function k 7→ c̄(k) with c̄(k) the probabi-
lity that two neighbors of a degree-k node are neighbors
themselves.

In uncorrelated networks the clustering spectrum c̄(k)
remains constant and independent of k. However, the
majority of real-world networks have spectra that decay
in k, as first observed in technological networks including
the Internet [9, 10]. Figure 1 shows the same phenome-
non for a social network: YouTube users as vertices, and
edges indicating friendships between them [11].
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Figure 1. c̄(k) for the YouTube social network

Close inspection suggests the following properties, not

only in Fig. 1, but also in the nine further networks in
Fig. 2. The right end of the spectrum appears to be of the
power-law form k−α; approximate values of α give rise to
the dashed lines; (ii) The power law is only approximate
and kicks in for rather large values of k. In fact, the slope
of c̄(k) decreases with k; (iii) There exists a transition
point: the minimal degree as of which the slope starts to
decline faster and settles on its limiting (large k) value.

For scale-free networks a decaying c̄(k) is taken as
an indicator for the presence of modularity and hierar-
chy [10], architectures that can be viewed as collections
of subgraphs with dense connections within themselves
and sparser ones between them. The existence of clus-
ters of dense interaction signals hierarchical or nearly de-
composable structures. When the function c̄(k) falls off
with k, low-degree vertices have relatively high clustering
coefficients, hence creating small modules that are con-
nected through triangles. In contrast, high-degree ver-
tices have very low clustering coefficients, and therefore
act as bridges between the different local modules. This
also explains why c̄(k) is not just a local property, and
when viewed as a function of k, measures crucial me-
soscopic network properties such as modularity, clusters
and communities. The behavior of c̄(k) also turns out to
be a good predictor for the macroscopic behavior of the
network. Randomizing real-world networks while preser-
ving the shape of the c̄(k) curve produces networks with
very similar component sizes as well as similar hierarchi-
cal structures as the original network [16]. Furthermore,
the shape of c̄(k) strongly influences the behavior of net-
works under percolation [17]. This places the c̄(k)-curve
among the most relevant indicators for structural corre-
lations in network infrastructures.

In this paper, we obtain a precise characterization
of clustering in the hidden variable model, a tractable
random graph null model. We start from an explicit form
of the c̄(k) curve for the hidden variable model [18–20].
We obtain a detailed description of the c̄(k)-curve in the
large-network limit that provides rigorous underpinning
of the empirical observations (i)-(iii). We find that the
decay rate in the hidden variable model is significantly
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Figure 2. c̄(k) for several information (red), technological (green) and social (blue) real-world networks. (a) Hudong encyclo-
pedia [12], (b) Baidu encyclopedia [12], (c) WordNet [13], (d) TREC-WT10g web graph [14], (e) Google web graph [11], (f)
Internet on the Autonomous Systems level [11], (g) Catster/Dogster social networks [15], (h) Gowalla social network [11], (i)
Wikipedia communication network [11]. The different shadings indicate the theoretical boundaries of the regimes as in Fig. 3,
with N and τ as in Table I.

different from the exponent c̄(k) ∼ k−1 that has been
found in a hierarchical graph model [10] as well as in
the preferential attachment model [21] and a preferential
attachment model with enhanced clustering [22]. Furt-
hermore, we show that before the power-law decay of c̄(k)
kicks in, c̄(k) first has a constant regime for small k, and
a logarithmic decay phase. This characterizes the entire
clustering spectrum of the hidden variable model.

This paper is structured as follows. Section II intro-
duces the random graph model and its local clustering
coefficient. Section III presents the main results for the
clustering spectrum. Section IV explains the shape of the

clustering spectrum in terms of an energy minimization
argument, and Section V quantifies how fast the limiting
clustering spectrum arises as function of the network size.
We conclude with a discussion in Section VI and present
all mathematical derivations of the main results in the
appendix.

II. HIDDEN VARIABLES

As null model we employ the hidden variable mo-
del [18, 23–26]. Given N nodes, hidden variable models
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are defined as follows. Associate to each node a hidden
variable h drawn from a given probability distribution
function

ρ(h) = Ch−τ (1)

for some constant C. Next join each pair of vertices inde-
pendently according to a given probability p(h, h′) with h
and h′ the hidden variables associated to the two nodes.
Many networks can be embedded in this hidden-variable
framework, but particular attention goes to the case in
which the hidden variables have themselves the structure
of the degrees of a real-world network. In that case the
hidden-variable model puts soft constraints on the de-
grees, which is typically easier to analyze than hard con-
straints as in the configuration model [4, 27–29]. Chung
and Lu [30] introduced the hidden variable model in the
form

p(h, h′) ∼ hh′

N〈h〉 , (2)

so that the expected degree of a node equals its hidden
variable.

We now discuss the structural and natural cutoff, be-
cause both will play a crucial role in the description of
the clustering spectrum. The structural cutoff is defined
as the largest possible upper bound on the degrees re-
quired to guarantee single edges, while the natural cutoff
characterizes the maximal degree in a sample of N verti-
ces. For scale-free networks with exponent τ ∈ (2, 3] the

structural cutoff scales as
√
N while the natural cutoff

scales as N1/(τ−1), which gives rise to structural nega-
tive correlations and possibly other finite-size effects. If
one wants to avoid such effects, then the maximal value of
the product hh′ should never exceed N〈h〉, which can be
guaranteed by the assumption that the hidden degree h
is smaller than the structural cutoff hs =

√
N〈h〉. While

this restricts p(h, h′) in (2) within the interval [0, 1], ban-
ning degrees larger than the structural cutoff strongly
violates the reality of scale-free networks, where degrees
all the way up to the natural cutoff (N〈h〉)1/(τ−1) need to
be considered. We therefore work with (although many
asymptotically equivalent choices are possible; see [31]
and Appendix A)

p(h, h′) = min
(

1,
hh′

N〈h〉
)
, (3)

putting no further restrictions on the range of the hidden
variables (and hence degrees).

In this paper, we shall work with c(h), the local cluste-
ring coefficient of a randomly chosen vertex with hidden
variable h. However, when studying local clustering in
real-world data sets, we can only observe c̄(k), the local
clustering coefficient of a vertex of degree k. In Appendix
C we show that the approximation c̄(h) ≈ c(h) is highly
accurate. We start from the explicit expression for c(h)
[18], which measures the probability that two randomly

h

c(h)

Nβ(τ)
N

1
2 N

1
τ−1
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Figure 3. Clustering spectrum h 7→ c(h) with three different
ranges for h: the flat range, logarithmic decay, and the power-
law decay.

chosen edges from h are neighbors, i.e.,

c(h) =

∫
h′

∫
h′′
p(h′|h)p(h′, h′′)p(h′′|h)dh′′dh′, (4)

with p(h′|h) the conditional probability that a randomly
chosen edge from an h-vertex is connected to an h′-vertex
and p(h, h′) as in (3). The goal is now to characterize the
c(h)-curve (and hence the c̄(k)-curve).

III. UNIVERSAL CLUSTERING SPECTRUM

The asymptotic evaluation of the double integral (4) in
the large-N regime reveals three different ranges, defined
in terms of the scaling relation between the hidden varia-
ble h and the network size N . The three ranges together
span the entire clustering spectrum as shown in Fig. 3.
The detailed calculations are deferred to Appendix A.

The first range pertains to the smallest-degree nodes,
i.e., vertices with a hidden variable that does not exceed
Nβ(τ) with β(τ) = τ−2

τ−1 . In this case we show that

c(h) ∝ N2−τ lnN, h ≤ Nβ(τ). (5)

In particular, here the local clustering does not depend
on the degree and in fact corresponds with the large-N
behavior of the global clustering coefficient [31, 32]. Note
that the interval [0, β(τ)] diminishes when τ is close to 2,
a possible explanation for why the flat range associated
with Range I is hard to recognize in some of the real-
world data sets.

Range II considers nodes with hidden variables (de-
grees) above the threshold Nβ(τ), but below the structu-

ral cutoff
√
N . These nodes start experiencing structural

correlations, and close inspection of the integral (4) yields

c(h) ∝ N2−τ
(

1 + ln
(√N
h

))
, Nβ(τ) ≤ h ≤

√
N. (6)

This range shows relatively slow, logarithmic decay in
the clustering spectrum, and is clearly visible in the ten
data sets.
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Figure 4. Orders of magnitude of the major contributions in
the different h-ranges. The highlighted edges are present with
asymptotically positive probability. (a) h <

√
N (b) h >

√
N .

Range III considers hidden variables above the struc-
tural cutoff, when the restrictive effect of degree-degree
correlations becomes more evident. In this range we find
that

c(h) ∝ 1

N

( h
N

)−2(3−τ)
, h ≥

√
N, (7)

hence power-law decay with a power-law exponent α =
2(3 − τ). Such power-law decay has been observed in
many real-world networks [4, 10, 33–36], where most net-
works were found to have the power-law exponent close
to one. The asymptotic relation (7) shows that the ex-
ponent α decreases with τ and takes values in the entire
range (0, 2). Table I contains estimated values of α for
the ten data sets.

IV. ENERGY MINIMIZATION

We now explain why the clustering spectrum splits
into three ranges, using an argument that minimizes the
energy needed to create triangles among nodes with spe-
cific hidden variables.

In all three ranges for h, there is one type of ‘most
likely’ triangle, as shown in Fig. 4. This means that most
triangles containing a vertex v with hidden variable h are
triangles with two other vertices v′ and v′′ with hidden
variables h′ and h′′ of specific sizes, depending on h. The
probability that a triangle is present between v, v′ and
v′′ can be written as

min

(
1,

hh′

N〈h〉

)
min

(
1,

hh′′

N〈h〉

)
min

(
1,
h′h′′

N〈h〉

)
. (8)

While the probability that such a triangle exists among
the three nodes thus increases with h′ and h′′, the number
of such nodes decreases with h′ and h′′ because vertices
with higher h-values are rarer. Therefore, the maximum
contribution to c(h) results from a trade-off between large
enough h′, h′′ for likeliness of occurrence of the triangle,
and h′, h′′ small enough to have enough copies. Thus,
having h′ > N〈h〉/h is not optimal, since then the pro-
bability that an edge exists between v and v′ no longer
increases with h′. This results in the bound

h′, h′′ ≤ N〈h〉
h

. (9)

Similarly, h′h′′ > N〈h〉 is also suboptimal, since then
further increasing h′ and h′′ does not increase the pro-
bability of an edge between v′ and v′′. This gives as a
second bound

h′h′′ ≤ N〈h〉. (10)

In Ranges I and II, h <
√
N〈h〉, so that N〈h〉/h >√

N〈h〉. In this situation we reach bound (10) before
we reach bound (9). Therefore, the maximum con-
tribution to c(h) comes from h′h′′ ≈ N , where also
h′, h′′ < N〈h〉/h because of the bound (9). Here the
probability that the edge between v′ and v′′ exists is
large, while the other two edges have a small probabi-
lity to be present, as shown in Fig. 4a. Note that for
h in Range I, the bound (9) is superfluous, since in this
regime N〈h〉/h > hc, while the network does not con-
tain vertices with hidden variables larger than hc. This
bound indicates the minimal values of h′ such that an
h-vertex is guaranteed to be connected to an h′-vertex.
Thus, vertices in Range I are not even guaranteed to have
connections to the highest degree vertices, hence they are
not affected by the single-edge constraints. Therefore the
value of c(h) in Range I is independent of h.

In Range III, h >
√
N〈h〉, so that N〈h〉/h <√

N〈h〉. Therefore, we reach bound (9) before we re-
ach bound (10). Thus, we maximize the contribution to
the number of triangles by choosing h′, h′′ ≈ N〈h〉/h.
Then the probability that the edge from v to v′ and from
v to v′′ is present is large, while the probability that the
edge between v′ and v′′ exists is small, as illustrated in
Fig. 4b.

V. CONVERGENCE RATE

We next ask how large networks should be, or become,
before they reveal the features of the universal clustering
spectrum. In other words, while the results in this paper
are shown for the large-N limit, for what finite N -values
can we expect to see the different ranges and clustering
decay? To bring networks of different sizes N on a com-
parable footing, we consider

σN (t) =
ln (c(h)/c(hc))

ln(N〈h〉) , h = (N〈h〉)t, (11)

for 0 ≤ t ≤ 1
τ−1 . The slope of σN (t) can be interpre-

ted as a measure of the decay of c(h) at h = (N〈h〉)t,
and all curves share the same right end of the spectrum;
see Appendix B for more details. Figure 5 shows this
rescaled clustering spectrum for synthetic networks ge-
nerated with the hidden variable model with τ = 2.25.
Already 104 vertices reveal the essential features of the
spectrum: the decay and the three ranges. Increasing
the network size further to 105 and 106 nodes shows that
the spectrum settles on the limiting curve. Here we note
that the real-world networks reported in Figs. 1 and 2
are also of order 105-106 nodes, see Table I.
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Figure 5. σN (t) for N = 104, 106 and 108 together with the
limiting function, using τ = 2.25, for which 1

τ−1
= 0.8.

N τ g.o.f. α
Hudong 1.984.484 2,30 0.00 0,85
Baidu 2.141.300 2,29 0.00 0,80
Wordnet 146.005 2,47 0.00 1,01
Google web 875.713 2,73 0.00 1,03
AS-Skitter 1.696.415 2,35 0.06 1,12
TREC-WT10g 1.601.787 2,23 0.00 0,99
Wiki-talk 2.394.385 2,46 0.00 1,54
Catster/Dogster 623.766 2,13 0.00 1,20
Gowalla 196.591 2,65 0.80 1,24
Youtube 1.134.890 2,22 0.00 1,05

Table I. Data sets. N denotes the number of vertices, τ the
exponent of the degree distribution estimated by the method
proposed in [27] together with the goodness of fit criterion
proposed in [27] (when the goodness of fit is at least 0.10, a
power-law distribution cannot be rejected), and α denotes the
exponent of c(k).

Figure 5 also brings to bear a potential pitfall when the
goal is to obtain statistically accurate estimates for the
slope of c(h). Observe the extremely slow convergence to
the limiting curve for N = ∞; a well documented pro-
perty of certain clustering measures [31, 32, 37, 38]. In
Appendix B we again use the integral expression (4) to
characterize the limiting curve for N = ∞ and the rate
of convergence as function of N , and indeed extreme N -
values are required for statistically reliable slope estima-
tes for e.g. t-values of 1

2 and 1
τ−1 ; this is also apparent

from visual inspection of Fig. 5. Therefore, the estimates
in Table I only serve as indicative values of α. Finally,
observe that Range II disappears in the limiting curve,
due to the rescaling in (11), but again only for extreme
N -values. Because this paper is about structure rather
than statistical estimation, the slow convergence in fact
provides additional support for the persistence of Range
II in Figs. 1 and 2.

Table I also shows that the relation α = −2(3 − τ) is
inaccurate for the real-world data sets, in turn affecting
the theoretical boundaries of the three regimes indicated
in Fig. 2. One explanation for this inaccuracy is that
the real-world networks might not follow pure power-law

distributions, as measured by the goodness of fit crite-
rion in Table I. Furthermore, real-world networks are
usually highly clustered and contain community struc-
tures, whereas the hidden variable model is locally tree-
like. These modular structure may explain, for example,
why the power-law decay of the hidden variable model is
less pronounced in the three social networks of Fig. 2. It
is remarkable that despite these differences between hid-
den variable models and real-world networks, the global
shape of the c(k) curve of the hidden variable model is
still visible in these heavy-tailed real-world networks.

VI. DISCUSSION

The hidden variable model gives rise to single-edge net-
works in which pairs of vertices can only be connected
once. Hierarchical modularity and the decaying cluste-
ring spectrum have been contributed to this restriction
that no two vertices have more than one edge connecting
them [9, 39–42]. The physical intuition is that the single-
edge constraint leads to far fewer connections between
high-degree vertices than anticipated based on randomly
assigned edges. We have indeed confirmed this intuition,
not only through analytically revealing the universal clus-
tering curve, but also by providing an alternative deriva-
tion of the three ranges based on energy minimization
and structural correlations.

We now show that the clustering spectrum revealed
using the hidden variable model, also appears for a se-
cond widely studied null model. This second model can-
not be the Configuration Model (CM), which preserves
the degree distribution by making connections between
vertices in the most random way possible [6, 43]. In-
deed, because of the random edge assignment, the CM
has no degree correlations, leading in the case of scale-
free networks with diverging second moment to uncorre-
lated networks with non-negligible fractions of self-loops
(a vertex joined to itself) and multiple connections (two
vertices connected by more than one edge). This picture
changes dramatically when self-loops and multiple edges
are avoided, a restriction mostly felt by the high-degree
nodes, who can no longer establish multiple edges among
each other.

We therefore consider the Erased Configuration Model
(ECM) that takes a sample from the CM and then erases
all the self-loops and multiple edges. While this removes
some of the edges in the graph, thus violating the hard
constraint, only a small proportion of the edges is remo-
ved, so that the degree of vertex j in ECM is still close
to Dj [44, Chapter 7]. In the ECM, the probability that
a vertex with degree Di is connected to a vertex with
degree Dj can be approximated by 1− e−DiDj/〈D〉N [45,
Eq.(4.9)]. Therefore, we expect the ECM and the hidden
variable model to have similar properties (see e.g. [31])
when we choose

p(h, h′) = 1− e−hh
′/N〈h〉 ≈ hh′

N〈h〉 . (12)
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Figure 6. c̄(k) for a hidden variable model with connection
probabilities (12) (solid line) and an erased configuration mo-
del (dashed line). The presented values of c̄(k) are averages
over 104 realizations of networks of size N = 105.

Figure 6 illustrates how both null models generate highly
similar spectra, which provides additional support for the
claim that the clustering spectrum is a universal property
of simple scale-free networks. The ECM is more difficult
to deal with compared to hidden variable models, since
edges in ECM are not independent. In particular, we
expect that these dependencies vanish for the k 7→ c̄(k)
curve. Establishing the universality of the k 7→ c̄(k) curve
for other random graph null models such as ECM, net-
works with an underlying geometric space [46] or hierar-
chical configuration models [47] is a major research di-
rection. The ECM and the hidden variable model are
both null models with soft constraints on the degrees.
Putting hard constraints on the degrees with the CM, has
the nice property that simple graphs generated using this
null model are uniform samples of all simple graphs with
the same degree sequence. Dealing with such uniform
samples is notoriously hard when the second moment

of the degrees is diverging, for example since the CM
will yield many edges between high-degree vertices. This
makes sampling uniform graphs difficult [48–50]. Thus,
the joint requirement of hard degree and single-edge con-
straints, as in the CM, presents formidable technical chal-
lenges. Whether our results for the k 7→ c̄(k) curve for
soft-constraint models also carry over to these uniform
simple graphs is a challenging open problem.

In this paper we have investigated the presence of tri-
angles in the hidden variable model. We have shown that
by first conditioning on the node degree, there arises a
unique ‘most likely’ triangle with two other vertices of
specific degrees. We have not only explained this insight
heuristically, but it is also reflected in the elaborate ana-
lysis of the double integral for c(h) in Appendix A. As
such, we have introduced an intuitive and tractable mat-
hematical method for asymptotic triangle counting. It
is likely that the method carries over to counting other
motifs, such as squares, or complete graphs of larger si-
zes. For any given motif, and first conditioning on the
node degree, we again expect to find specific configura-
tion that are most likely. Further mathematical challen-
ges need to be overcome, though, because we expect that
the ‘most likely’ configurations critically depend on the
precise motif topologies and the associated energy mini-
mization problems.
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Appendix A: Derivation for the three ranges

In this appendix, we compute c(h) in (4), and we show
that c(h) can be approximated by (5), (6), or (7), depen-
ding on the value of h. Throughout the appendix, we
assume that p(h, h′) = min(1, hh′/h2s) and ρ(h) = Ch−τ .
Then, the derivation of c(h) in [16] yields

c(h) =

∫ hc
1

∫ hc
1
ρ(h′)p(h, h′)ρ(h′′)p(h, h′′)p(h′, h′′)dh′′dh′[ ∫ hc

1
ρ(h′)p(h, h′)dh′

]2
=

∫ hc
1

∫ hc
1

(h′h′′)−τ min(hh
′

h2
s
, 1) min(hh

′′

h2
s
, 1) min(h

′h′′

h2
s
, 1)dh′′dh′[ ∫ hc

1
(h′)−τ min(hh

′
h2
s
, 1)dh′

]2 .

(A1)

Computing c(h) will also allow us to compute

σN (t) =
ln(c(h)/c(href))

ln(N〈h〉) , h = (N〈h〉)t, (A2)

for 0 ≤ t ≤ 1
τ−1 , where href ∈ [0, hc] is fixed. We are

interested in computing the value of σN (t) for large values
of N .

Adopting the standard choices [31]

hs =
√
N〈h〉, hc = (N〈h〉)1/(τ−1), (A3)

and setting hmin = 1 gives

〈h〉 =
τ − 1

τ − 2

1−N2−τ

1−N1−τ . (A4)

For ease of notation in the proofs below, we will use

a = h−1s = (N〈h〉)−1/2, b =
hc
hs

= (N〈h〉)
3−τ

2(τ−1) , (A5)

and

r(u) = min(u, 1). (A6)

In this notation, (A1) can be succinctly written as

c(h) =

∫ b
a

∫ b
a

(xy)−τr(ahx)r(ahy)r(xy)dxdy[ ∫ b
a
x−τr(ahx)dx

]2 . (A7)

Because of the four min operators in the expression (A1),
we have to consider various h-ranges. We compute the
value of c(h) in these three ranges one by one.
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Range I: h < h2s/hc. We now show that in this range

c(h) ≈ τ − 2

3− τ h
4−2τ
s ln

(h2c
h2s

)
∝ N2−τ lnN, (A8)

which proves (5).
This range corresponds to h < 1/(ab) with a and b as

in (A5). In this range, r(ahx) = ahx and r(ahy) = ahy
for all x ∈ [a, b]. This yields for c(h)

c(h) =

∫ b
a

∫ b
a

(xy)1−τr(xy)dxdy[ ∫ b
a
x1−τdx

]2 . (A9)

For the denominator we compute∫ b

a

x1−τdx =
a2−τ − b2−τ

τ − 2
. (A10)

Since a� b, this can be approximated as

a2−τ − b2−τ
τ − 2

≈ a2−τ

τ − 2
. (A11)

We can compute the numerator of (A9) as∫ b

a

∫ b

a

(xy)1−τr(xy)dxdy

=

∫ 1/b

a

∫ b

a

(xy)2−τdxdy +

∫ b

1/b

∫ 1/x

a

(xy)2−τdxdy

+

∫ b

1/b

∫ b

1/x

(xy)1−τdxdy

=

(
bτ−3 − a3−τ

) (
b3−τ − a3−τ

)
(3− τ)2

+
1

3− τ

(
ln
(
b2
)
− a3−τ

(
b3−τ − bτ−3

)
3− τ

)

+
1

2− τ

(
b2−τ (b2−τ − bτ−2)

2− τ − ln
(
b2
))

=
ln
(
b2
)

(3− τ)(τ − 2)
− 1− b4−2τ

(τ − 2)2
+

1− 2(ab)3−τ + a6−2τ

(3− τ)2
.

(A12)
The first of these three terms dominates when

3− τ
τ − 1

ln(N〈h〉)
(3− τ)(τ − 2)

� 1

(τ − 2)2
(A13)

and

3− τ
τ − 1

ln(N〈h〉)
(3− τ)(τ − 2)

� 1

(3− τ)2
, (A14)

where we have used that b2 = (N〈h〉)(3−τ)/(τ−1). Thus,
when ln(N〈h〉) is large compared to (τ − 1)/(τ − 2) and
(τ − 1)(τ − 2)/(τ − 3)2, we obtain

c(h) ≈ τ − 2

3− τ a
2τ−4 ln

(
b2
)
∝ N2−τ ln(N), (A15)

which proves (A8).

Range II: h2s/hc < h < hs In this range, we show
that

c(h) ≈ h4−2τs

ln
(
h2
s

h2

)
+M

(τ − 2)(3− τ)
∝ N2−τ (ln (N/h2)+M

)
,

(A16)
for some positive constant M , which proves (6).

This range corresponds to (ab)−1 < h < a−1. For these
values of h, we have ahx, ahy = 1 for x, y = (ah)−1 ∈
(1, b) and xy = 1 for y = 1/x ∈ [a, b] when b−1 < x < b.
Then for the denominator of (A7) we compute∫ 1/(ah)

a

ahx1−τdx+

∫ b

1/(ah)

x−τdx

=
1

τ − 2
(a3−τh− (ah)τ−1)

+
1

τ − 1
((ah)τ−1 − b1−τ )

= ah

(
a2−τ

τ − 2
− (ah)τ−2

(τ − 1)(τ − 2)
− b1−τ/(ah)

τ − 1

)
. (A17)

Splitting up the integral in the numerator results in

Num(h) =

∫ b

a

∫ b

a

(xy)−τr(ahx)r(ahy)r(xy)dxdy

=

∫ b

1/(ah)

∫ b

1/(ah)

(xy)−τdydx

+ 2ah

∫ b

1/(ah)

∫ 1/(ah)

1/x

(xy)−τydydx

+ 2ah

∫ b

1/(ah)

∫ 1/x

a

(xy)1−τydydx

+ a2h2
∫ 1/(ah)

ah

∫ 1/x

a

(xy)2−τdydx

+ a2h2
∫ 1/(ah)

ah

∫ 1/(ah)

1/x

(xy)1−τdydx

+ a2h2
∫ ah

a

∫ 1/(ah)

a

(xy)2−τdydx

=: I1 + I2 + I3 + I4 + I5 + I6,
(A18)

where the factors 2 arise by symmetry of the integrand
in x and y. Computing these integrals yields

I1 = a2h2
(

(ah)τ−2 − a−1b1−τh−1
τ − 1

)2

, (A19)

I2 = 2a2h2
(1− 1/(abh)

τ − 2
− (ah)2τ−4

(τ − 1)(τ − 2)
(A20)

×
(
1− (abh)1−τ

) )
, (A21)

I3 = 2a2h2
(1− 1/(abh)

3− τ − hτ−3
(
1− (abh)2−τ

)
(3− τ)(τ − 2)

)
,

(A22)

I4 = a2h2
(

ln((ah)−2)

3− τ +
(a2h)3−τ − hτ−3

(3− τ)2

)
, (A23)
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I5 = a2h2
(

ln((ah)−2)

τ − 2
− 1− (ah)2τ−4

(τ − 2)2

)
, (A24)

I6 = a2h2
(

1− hτ−3 + a6−2τ − (a2h)3−τ

(3− τ)2

)
. (A25)

We have ah < 1 < ahb and so the leading behavior of
Num(h) is determined by the terms involving ln((ah)−2)
in I3 and I4, all other terms being bounded. Retaining
only these dominant terms, we get

Num(h) = a2h2
ln((ah)−2)

(τ − 2)(3− τ)
(1 + o(1)), (A26)

provided that ah→ 0 asN →∞. In terms of the variable
t in h = (N〈h〉)t, see (11) and (A2), this condition holds
when we restrict to t ∈ [(τ − 2)/(τ − 1), 12 − ε] for any
ε > 0. Furthermore, from (A17),

(∫ b

a

x−τr(ahx)dx

)2

= a2h2
(
a2−τ

τ − 2

)2

(1 + o(1)).

(A27)
Hence, when ah→ 0, we have

c(h) =
τ − 2

3− τ a
2τ−4 ln

(
(ah)−2

)
(1+o(1)) ∝ N2−τ ln

(
N/h2

)
.

(A28)

We compute c(h = 1/a) asymptotically by retaining
only all constant terms between brackets in (A19)-(A25)
since all other terms vanish or tend to 0 as N →∞. This
gives

Num(h = 1/a) = a2h2
( 1

(τ − 1)2
+

2

τ − 2

− 2

(τ − 1)(τ − 2)
+

2

3− τ +
1

(3− τ)2

)
(1 + o(1))

= Pa2h2(1 + o(1)),
(A29)

where P = 1
(τ−1)2 + 1

(3−τ)2 + 2
τ−1 + 2

3−τ . Together

with (A27), we find

c(h = 1/a) = P (τ − 2)2a2τ−4(1 + o(1)) ∝ N2−τ. (A30)

In [31], it has been shown that c(h) decreases in h, and
then (A16) follows from (A28) and (A30).

Range III: hs < h < hc. We now show that when
hs < h < hc, then

c(h) ≈ 1

(3− τ)2
(hs/h)6−2τh4−2τs ∝ N5−2τh2τ−6,

(A31)
which proves (7).

This range corresponds to 1/a < h < b/a. The de-
nominator of (A7) remains the same as in the previous
range and is given by (A17). Splitting up the integral in

the numerator of (A7) now results in

Num(h) =

∫ b

a

∫ b

a

(xy)−τr(ahx)r(ahy)r(xy)dxdy

=

∫ ah

1/(ah)

∫ b

1/x

(xy)−τdydx+

∫ b

ah

∫ b

1/(ah)

(xy)−τdydx

+

∫ ah

1/(ah)

∫ 1/x

1/(ah)

(xy)1−τdydx

+ 2ah

∫ b

ah

∫ 1/(ah)

1/x

(xy)−τydydx

+ 2ah

∫ ah

1/(ah)

∫ 1/(ah)

a

(xy)1−τydydx

+ 2ah

∫ b

ah

∫ 1/x

a

(xy)1−τydydx

+ a2h2
∫ 1/(ah)

a

∫ 1/(ah)

a

(xy)2−τdydx

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.
(A32)

Computing these integrals yields

I1 = a2h2
(

(ah)−2
ln(a2h2)

τ − 1
(A33)

+
b1−τ

(
(ah)−τ−1 − (ah)τ−3

)
(τ − 1)2

)
, (A34)

I2 = a2h2

(
(ah)−2 + b2−2τ (ah)−2

(τ − 1)2
(A35)

− b1−τ
(
(ah)τ−3 + (ah)−τ−1

)
(τ − 1)2

)
, (A36)

I3 = a2h2
(
−(ah)−2

ln(a2h2)

τ − 2
+

(ah)2τ−6 − (ah)−2

(τ − 2)2

)
,

(A37)

I4 = 2a2h−2
(
− (abh)−1

τ − 2
+

(ah)−2

τ − 1
+

b1−τ (ah)τ−3

(τ − 1)(τ − 2)

)
,

(A38)

I5 = 2a2h2
(

(ah)2τ−6 + h1−τa4−2τ − hτ−3 − (ah)−2

(3− τ)(τ − 2)

)
,

(A39)

I6 = 2a2h2
( (ab)2−τh−1 − h1−τa4−2τ

(3− τ)(τ − 2)
(A40)

− (abh)−1 − (ah)−2

3− τ
)
, (A41)

I7 = a2h2
(
a6−2τ − 2hτ−3 + (ah)2τ−6

τ − 3

)
. (A42)

A careful inspection of the terms between brackets
in (A34) and (A42) shows that the terms involving
(ah)2τ−6 are dominant when ah → ∞. In terms of the
variable t in h = (N〈h〉)t, see (11) and (A2), we have
that ah→∞ when we restrict to t ∈ [ 12 +ε, 1/(τ−1)] for
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any ε > 0. When we retain only these dominant terms,
we have, when ah→∞,

Num(h) = a2h2(ah)2τ−6

×
(

1

(τ − 2)2
+

2

(3− τ)(τ − 2)
+

1

(3− τ)2

)
(1 + o(1))

= a2h2
(ah)2τ−6

(τ − 2)2(3− τ)2
(1 + o(1)).

(A43)
Using (A27) again, we get, when ah→∞,

c(h) =
1

(3− τ)2
(ah)2τ−6a2τ−4(1 + o(1)) ∝ N5−2τh2τ−6.

(A44)
Furthermore, c(1/a) is given by (A30), while c(h) decre-
ases in h. This gives (A31).

Other connection probabilities In [31] we have presen-
ted a class of functions r(u) = uf(u), u ≥ 0, so that

p(h, h′) = r(u) with u =
hh′

h2s
. (A45)

has appropriate monotonicity properties. The maximal
member r(u) = min(u, 1) of this class yields p in (3) and
is quite representative of the whole class, while allowing
explicit computation and asymptotic analysis of c(h) as
in [31] and this paper. Figure 7 shows that other asymp-
totically equivalent choices such as r(u) = u/(1 + u) and
r(u) = 1 − e−u have comparable clustering spectra. A
minor difference is that the choice r(u) = min(1, u) for p
in (3) forces c(h) to be constant on the range h ≤ Nβ(τ),
while the other two choices show a gentle decrease.

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

h

c(h)

τ =2.25
τ =2.5
τ =2.75

Figure 7. c(h) for r(u) = min(u, 1) (line), r(u) = u/(1 + u)
(dashed) and r(u) = 1 − e−u (dotted), obtained by calcula-
ting (A7) numerically.

Limiting form of σN (t) and finite-size effects We con-
sider σN (t) as in (A2) with href = 0. Using (A8), (A16)
and (A31), it is readily seen that

lim
N→∞

σN (t) =

{
0, 0 ≤ t ≤ 1

2 ,

(3− τ)(1− 2t), 1
2 ≤ t ≤ 1

τ−1 .

(A46)

Hence, some of the detailed information that is pre-
sent in (A8), (A16) and (A31), disappears when taking
the limit as in (A46). This is in particular so for the
lnN -factor in (A8) and the logarithmic decaying factor
ln(N2/h) in Region II.

Consider σN (t) of (A2) with href = hc as is done
in Fig. 5. It follows from the detailed form of (A8)
and (A31), that

σN (0) =
ln(c(0)/c(hc))

ln(N〈h〉) = γ +
ln(βy)

y
, (A47)

where

γ =
(3− τ)2

τ − 1
, β = (τ − 2)γ, y = ln(N〈h〉). (A48)

We have that σN (0) → γ as N → ∞, and the right-
hand side of (A47) exceeds this limit γ from y = 1/β
onwards with a maximum excess β/e for N〈h〉 as large
as exp(e/β). This explains why the excess of σN (0) over
its limit value in Fig. 5 with ee/β = 3×1010 when τ = 9/4
persists.

Appendix B: Exact and asymptotic result for decay
rate of c(h) at h = hc and h = hs

We let hc = (N〈h〉)1/(τ−1), where we assume that N
is so large that hc ≤ N . This requires N to be of the
order (1/ε)1/ε, where ε = τ − 2. We again consider the
function σN (t) of (11),

σN (t) =
ln(c(h)/c(href))

ln(N〈h〉) , h = (N〈h〉)t, (B1)

for 0 ≤ t ≤ 1
τ−1 and href is fixed, so that

c(h) = c(href)(N〈h〉)σN (t), h = (N〈h〉)t. (B2)

When we fix a t0 and linearize σN (t) around t0, we get

c(h) ≈ c(href)(N〈h〉)σN (t0)+(t−t0)σ′N (t0)

= c(h0)

(
h

h0

)σ′N (t0)

(B3)

so that σ′N (t) = d
dtσN (t) is a measure for the decay rate

of c(h) at h = h0 = (N〈h〉)t0 .
In this appendix, we compute an exact expression for

σ′N (t) at t = 1
τ−1 , we compute its limit as N → ∞ and

discuss convergence speed, and we show that this limit is
a lower bound for σ′N (t).

More precisely, we show the following result:

Proposition 1. Let a and b be as in (A5). Then,

σ′N

(
1

τ − 1

)
= −2

(
A+ 3−τ

τ−2C

A+ 4−τ
τ−2C

− D

E +D

)
, (B4)
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where

A =
1

b2

( − ln(b2)

(τ − 1)(τ − 2)
− 1− b2(1−τ)

(τ − 1)2
+

b2(τ−2) − 1

(τ − 2)2

)
,

(B5)

C =

(
bτ−3 − a3−τ

3− τ

)2

, (B6)

D =
1

b

bτ−1 − b1−τ
τ − 1

, (B7)

E =
a2−τ − bτ−2

τ − 2
. (B8)

Furthermore,

σ′N ( 1
τ−1 ) > lim

M→∞
σ′M

(
1

τ−1

)
= −2(3− τ) (B9)

for all N .

The limiting value in (B9) is consistent with the limi-
ting value of σN (t) that has been found in (A46). We
assess this convergence result with plots. While these in-
dicate that the limits are only reached for very large N ,
especially when τ is close to 2, it can also be seen that the
limiting shape of σN (t) already shows up for considerably
smaller N .

To start the proof of Proposition 1, note that in the
a, b notation of (A5),

c(h) =
K(h)

J(h)
, 0 ≤ h ≤ hc, (B10)

where

K(h) =

∫ b

a

∫ b

a

(xy)2−τf(ahx)f(ahy)f(xy)dxdy, (B11)

J(h) =
(∫ b

a

x1−τf(ahx)dx
)2
, (B12)

with f(u) = min(1, u−1). Note that r(u) = uf(u),
see (A6). We compute

σ′N (t) =
d

dt

(
ln (c((N〈h〉)t)/c(href))

ln(N〈h〉)

)
= (N〈h〉)t ln(N〈h〉) c′((N〈h〉)t)

c((N〈h〉)t) ln(N〈h〉)

= h
c′(h)

c(h)
, h = (N〈h〉)t, (B13)

where the prime on c indicates differentiation with re-
spect to h. With (B10) we get

c′(h)

c(h)
=
K ′(h)

K(h)
− J ′(h)

J(h)
, (B14)

and we have to evaluate K(h),K ′(h), J(h) and J ′(h) at

h = hc = b/a. (B15)

Lemma 1.

K(hc) = A+
4− τ
2− τ C, K

′(hc) = −2a
b

(
A+

3− τ
τ − 2

C

)
,

(B16)

J(hc) = (D + E)2, J ′(hc) = − 2a
b (D + E)D, (B17)

with A,C,D,E as in (B5)–(B8).

From Lemma 1, (B13) and (B15) we get (B4) in
Proposition 1.

Proof of Lemma 1. Since hc = b/a,

K(hc) =

∫ b

a

∫ b

a

(xy)2−τf(bx)f(by)f(xy)dxdy. (B18)

With f(u) = min(1, u−1) we split up the integration
range [a, b]× [a, b] into the four regions [a, 1/b]× [a, 1/b],
[1/b, b] × [1/b, b], [1/b, b] × [a, 1/b] and [a, 1/b] × [1/b, b],
where we observe that a ≤ 1/b ≤ 1 ≤ b. We first get∫ 1/b

a

∫ 1/b

a

(xy)2−τf(bx)f(by)f(xy)dxdy

=

∫ 1/b

a

∫ 1/b

a

(xy)2−τ · 1 · 1 · 1dxdy

=

(
bτ−3 − a3−τ

3− τ

)2

= C. (B19)

Next, ∫ b

1/b

∫ b

1/b

(xy)2−τf(bx)f(by)f(xy)dxdy

=

∫ b

1/b

∫ b

1/b

(xy)2−τ
1

bx

1

by
f(xy)dxdy

=
1

b2

∫ b

1/b

∫ b

1/b

(xy)1−τf(xy)dxdy. (B20)

The remaining double integral with τ+1 instead of τ has
been evaluated in [31, Appendix C, (C3)] as

− ln(b2)

(τ − 1)(τ − 2)
−1− b2(1−τ)

(τ − 1)2
+
b2(τ−2)−1

(τ − 2)2
= b2A. (B21)

Finally, the two double integrals over [1/b, b] × [a, 1/b]
and [a, 1/b]× [1/b, b] are by symmetry both equal to∫ b

1/b

∫ 1/b

a

(xy)2−τf(bx)f(by)f(xy)dxdy

=

∫ b

1/b

∫ 1/b

a

(xy)2−τ
1

bx
· 1 · 1dxdy

=
1

b

bτ−2 − b2−τ
τ − 2

bτ−3 − a3−τ
3− τ =

(bτ−3 − a3−τ )2

(τ − 2)(3− τ)

=
3− τ
τ − 2

C. (B22)
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Here we have used that, see (A5),

b1−τ = a3−τ . (B23)

Now the expression in (B16) for K(hc) follows.
To evaluate K ′(hc), we observe by symmetry that

K ′(h) = 2

∫ b

a

∫ b

a

(xy)2−τaxf ′(ahx)f(ahy)f(xy)dxdy.

(B24)
At h = hc, we have ah = b, and so

K ′(hc) = 2
a

b

∫ b

a

∫ b

a

(xy)2−τ bxf ′(bx)f(by)f(xy)dxdy.

(B25)
Now uf ′(u) = 0 for 0 ≤ u ≤ 1 and uf ′(u) = −f(u)
for u ≥ 1. Hence, splitting up the integration range
into the four regions as earlier, we see that those over
[a, 1/b]× [a, 1/b] and [a, 1/b]× [1/b, b] vanish while those
over [1/b, b]× [1/b, b] and [1/b, b]× [a, 1/b] give rise to the
same double integrals as in (B20) and (B22) respectively.
This yields the expression in (B16) for K ′(hc).

The evaluation of J(hc) and J ′(hc) is straightforward
from (B12) with ah = b and a splitting of the integration
range [a, b] into [a, 1/b] and [1/b, b]. This yields (B17),
and the proof of Lemma 1 is complete.

We now turn to the limiting behavior of σ′N ( 1
τ−1 ) as

N →∞. For this we write

0 <
D

D + E
=

1− b2(1−τ)
τ−1
τ−2 (ab)2−τ − 1

τ−2 − 1
τ−1b

2(1−τ) , (B26)

in which

b2(1−τ) = (N〈h〉)τ−3 → 0, (B27)

(ab)2−τ = (N〈h〉)
(τ−2)2

τ−1 →∞, (B28)

as N → ∞. Hence, D/(D + E) → 0 as N → ∞. Furt-
hermore, we write

C =
b2(τ−3)

(τ − 3)2
(
1− (ab)3−τ

)2
, (B29)

and

A =
b2(τ−3)

(τ − 2)2
(1− F ), (B30)

where

F = b−2(τ−2)
[τ − 2

τ − 1
ln(b2)

+

(
τ − 2

τ − 1

)2

(1− b2(1−τ)) + 1
]

=
1

τ − 1
b−2(τ−2) ln(b2(τ−2))

(
1 +O

(
1

ln(b)

))
.

(B31)
Now, using (B23), we have

(ab)3−τ = b−2(τ−2) = (N〈h〉)
(τ−2)(3−τ)

τ−1 → 0 (B32)

as N →∞. Thus, we get

lim
N→∞

A+ 3−τ
2−τC

A+ 4−τ
2−τC

=

1
(τ−2)2 + 3−τ

τ−2
1

(3−τ)2
1

(τ−2)2 + 4−τ
τ−2

1
(3−τ)2

= 3− τ,

(B33)
and this yields (B9).

Note that D/(D + E) approaches 0 much slower than
the limit in (B33) is reached when τ is close to 2, com-
pare (B28) and (B33). Thus, we can concentrate on
D/(D + E), and the relative deviation of σ′N (t) from
−2(3− τ) is approximately

2D

D + E

1

2(3− τ)
≈ τ − 2

3− τ
1

(ab)2−τ − 1

≈ τ − 2

3− τ (N〈h〉)−
(τ−2)2

τ−1 . (B34)

We finally turn to the inequality in (B9) in Proposi-
tion 1. Obviously, we have

σ′N
(

1
τ−1

)
> −2

A+ 3−τ
τ−2C

A+ 4−τ
τ−2C

. (B35)

We shall show that

A+ 3−τ
τ−2C

A+ 4−τ
τ−2C

≤
Aas + 3−τ

τ−2Cas

Aas + 4−τ
τ−2Cas

= 3− τ, (B36)

where

Aas =
b2(τ−3)

(τ − 2)2
, Cas =

b2(τ−3)

(3− τ)2
, (B37)

the asymptotic form of A and C as N → ∞ obtained
from (B30) and (B29) by deleting F and (ab)3−τ , re-
spectively. The function

x ∈ [0,∞) 7→
1 + 3−τ

τ−2x

1 + 4−τ
τ−2x

(B38)

is decreasing in x ≥ 0, and so it suffices to show that

Cas

Aas
≤ C

A
, i.e., that

Cas

C
≤ Aas

A
. (B39)

We have from (B29) that

Cas

C
=

1

(1− (ab)3−τ )
2 , (B40)

and from (B30) and (B31) that

A

Aas
= 1− F = 1− b−2(τ−2) − b−2(τ−2)

×
[
τ − 2

τ − 1
ln(b2) +

(τ − 2

τ − 1

)2
(1− b2(1−τ))

]
. (B41)

Using that (ab)3−τ = b−2(τ−2), see (B32), we see that the
inequality Cas/C ≤ Aas/A in (B39) is equivalent to

(1− b−2(τ−2))2 ≥ 1− b−2(τ−2) − b−2(τ−2)

×
[
τ − 2

τ − 1
ln(b2) +

(τ − 2

τ − 1

)2
(1− b2(1−τ))

]
. (B42)
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Using that (1 − u)2 − (1 − u) = −u(1 − u) and dividing
through by u = b−2(τ−2), we see that (B42) is equivalent
to

τ − 2

τ − 1
ln(b2) +

(τ − 2

τ − 1

)2
(1− b2(1−τ)) ≥ 1− b−2(τ−2).

(B43)
With y = ln(b2) ≥ 0, we write (B43) as

K(y) :=
(τ − 2

τ − 1

)2
(1−e(1−τ)y)+

τ − 2

τ − 1
y−(1−e(2−τ)y) ≥ 0.

(B44)
Taylor development of K(y) at y = 0 yields

K(y) = 0 · y0 + 0 · y1 + 0 · y2 +
1

6
(τ − 2)2y3 + . . . . (B45)

Furthermore,

K ′′(y) = (τ − 2)2e(1−τ)y(ey − 1) > 0, y > 0. (B46)

Therefore, K(0) = K ′(0) = 0, while K ′′(y) > 0 for y > 0.
This gives K(y) > 0 when y > 0, as required.

Similar to Proposition 1, we can derive the following
result for σ′N ( 1

2 ):

Proposition 2.

σ′N ( 1
2 ) = −2

(
G+H(

1 +
(
τ−1
3−τ

)2)
G+ 2H

− I

I + J

)
, (B47)

where

G =

(
1− b1−τ
τ − 1

)2

, (B48)

I =
1− b1−τ
τ − 1

, (B49)

J =
b(τ−2)(τ−1)/(3−τ) − 1

τ − 2
, (B50)

H =
1− 1/b− b1−τ (1− b2−τ )

(τ − 2)(3− τ)
− 1− b1−τ

(τ − 1)(τ − 2)
. (B51)

Furthermore,

σ′N ( 1
2 ) > lim

M→∞
σ′M ( 1

2 ) = −1 +
2(τ − 2)

3− (τ − 2)2
, (B52)

for all N .

Figure 8 shows the values of σ′N ( 1
2 ) and σ′N ( 1

τ−1 ) for
finite-size networks together with its limiting value. For
example, when τ = 2.25, Fig. 8a shows that N needs to
be of the order 1016 for the slope to be ‘close’ to its limi-
ting value -1.5. When for example N = 106 we see that
the slope is much smaller: approximately -1.1. This ma-
kes statistical estimation of the true underling power-law
exponent α extremely challenging, especially for the re-
levant regime τ close to 2, because enormous amounts of
data should be available to get sufficient statistical accu-
racy. Most data sets, even the largest available networks

used in this paper, are simply not large enough to have
sufficiently many samples from the large-degree region
to get a statistically accurate estimate of the power-law
part. This also explains why based on smaller data sets
it is common to assume that α is roughly one [4, 10, 33–
36]. Comparing Fig. 8a and Fig. 8b shows that the con-
vergence to the limiting value is significantly faster at the
point t = 1

2 than at the point t = 1
τ−1 .

Appendix C: From hidden variables to degrees

In this paper, we focus on computing c(h), the local
clustering coefficient of a randomly chosen vertex with
hidden variable h. However, when studying local cluste-
ring in real-world data sets, we can only observe c̄(k), the
local clustering coefficient of a vertex of degree k. In this
appendix, we show that for the hidden variable model,
the difference between these two methods of computing
the clustering coefficient is small and asymptotically neg-
ligible. We consider

c(h) =

∫ hc
1

∫ hc
1

(xy)2−τp(h, h′)p(h, h′′)p(h′, h′′)dh′dh′′(∫ hc
1
x1−τp(h, h′)dh′

)2 .

(C1)
We define c̄(k) as the average clustering coefficient over
all vertices of degree k. By [32], the probability that a
vertex with hidden variable h has degree k equals

g(k | h) =
e−hhk

k!
. (C2)

Then, by [32],

c̄(k) =

{
1

P (k)

∫ hc
1
ρ(h)c(h)g(k | h)dh, k ≥ 2,

0, k < 2,
(C3)

where c̄(k) = 0 for k < 2 because a vertex with degree
less than 2 cannot be part of a triangle. Here

P (k) =

∫ hc

1

g(k | h)ρ(h)dh (C4)

is the probability that a randomly chosen vertex has de-
gree k.

First we consider the case where h > N
τ−2
τ−1 . The Cher-

noff bound gives for the tails of the Poisson distribution
that

P (Poi(λ) > x) ≤ e−λ
(

eλ

x

)x
, x > λ, (C5)

P (Poi(λ) < x) ≤ e−λ
(

eλ

x

)x
, x < λ. (C6)

Let k(h) be the degree of a node with hidden variable h.
Then, for any M > 1

∞∑
k=Mh

g(k | h) ≤
(

eM−1

MM

)h
, (C7)
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Figure 8. σ′N (t) plotted against N for (a) t = 1
τ−1

and (b) t = 1
2
. The dashed line gives the limiting value of σ′N (t) as N →∞.
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Figure 9. c̄(k) (dashed) and c(h) (line) for N = 105, averaged
over 104 realizations.

and for any δ ∈ (0, 1),

δh∑
k=1

g(k | h) ≤
(

eδ−1

δδ

)h
. (C8)

Because ex−1/xx < 1 for x 6= 1, (C7) and (C8) tend to
zero as h→∞. Therefore, for h large,

k(h) = h(1 + o(1)) (C9)

with high probability. Therefore, when k is large,

c̄(k) ≈ c(k). (C10)

Thus, c(h) is very similar to c̄(k).
On the other hand, for h� h2s/hc,

∞∑
h2
s/hc

g(k | h) ≤ e−h
(

eh

h2s/hc

)h2
s/hc

, (C11)

which is small by the assumption on h. Thus,

P (k) ≈
∫ h2

s/hc

1

g(k | h)ρ(h)dh. (C12)

Furthermore, c(h) = c(0) in this regime of h. This results
in

c̄(k) ≈ c(0)
∫ h2

s/hc
1

ρ(h)g(k | h)dh∫ h2
s/hc

1
ρ(h)g(k | h)dh

= c(0). (C13)

Therefore, c̄(h) ≈ c(h) also when h is small.
Figure 9 shows that indeed the difference between c̄(k)

and c(k) is small. When τ approaches 2, the difference
becomes larger. We see that for small values of k, c̄(k)
and c(k) are not very close. This is due to the fact
that (C1) does not take into account that a vertex with
hidden variable h may have less than 2 neighbors, so that
its local clustering is zero. In [31] we show how to ad-
just (A7) to account for this.
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