Classroom proot of the density theorem for
Gabor systems

A.J.E.M. Janssen

Abstract.
In this note we present a short and easy proof of the density theorem for
Gabor systems (g, a, b):

(i) when (g,a,b) is a Gabor frame we have ab < 1,

(ii) when (g, a,b) is a Riesz-Gabor basis we have ab > 1.

1 Introduction

Let g € L*(R), a > 0, b > 0. We denote

(g, a, b) = (gna,mb)n,mez , (1)

and call this a Gabor system, where for f € L*(R) and z,y € R we use the
notation

foy(t) =™ f(t — 1), teER, (2)

for the time-frequency translate of f over distance (z,y). Gabor systems have
been studied extensively the last 15 years, the interest coming from signal
theorists and communication theorists. The interest from signal theorists
is motivated by the question whether it is possible to expand any signal
f € L*R) as

f - Z Cnm gna,mb (3)
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in a stable manner with (possibly non-unique) 1?(Z?) coefficients c,,,. Stated
somewhat imprecisely, the signal theorists ask when the system (g, a, b) spans
L?*(R) in a decent manner. The interest from communication theorists is
motivated by the question whether it is possible to retrieve any data set
(dym)n,mez uniquely from the data-modulated signal

Z dnm gna,mb . (4)

)

Stated somewhat imprecisely, the communication theorists ask when the sys-
tem (g, a, b) is sufficiently linearly independent. One should expect here that
one cannot answer the signal theorists’ question in the affirmative when «
and b are large, and that one cannot answer the communication theorists’
question in the affirmative when a and b are small.

In modern Gabor theory, these two questions have been brought into a
precise mathematical form, viz. whether the system (g, a, b) is a Gabor frame
or a Riesz-Gabor basis for the signal theorists and communication theorists,
respectively. Furthermore, the following result has been obtained in this the-
ory.

Density theorem for Gabor systems
(i) when (g,a,b) is a Gabor frame, then ab < 1,
(ii) when (g, a,b) is a Riesz-Gabor basis, then ab > 1.

In Sec. 2 we shall present definitions and preliminaries about Gabor
frames and Riesz-Gabor bases. In Sec. 3 we present a proof of the density the-
orem, based on the unitarity property of the short-time Fourier transform.
This proof is short and easy, and can therefore be included in a graduate
course on signal theory, communication theory and modern applied Fourier
analysis. In Sec. 4 we comment on the underlying duality principle for Gabor
systems according to which (g, a,b) is a Gabor frame if and only if (g, ;, +)
is a Riesz-Gabor basis.

2 Preliminaries from Gabor analysis
There are nowadays excellent textbooks covering Gabor analysis, see [1],
Ch. 4 and Secs. 3.4-5, [2] and [3] (advanced Gabor theory and applications),

[4], Chs. 5-8 and 11-13, [5], Chs. 5-10. We briefly present the main points
here. We call (g,a,b) a Gabor frame when there are A > 0, B < oo (frame
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bounds) such that for all f € L?(R)

ANz < 32 10 gnans) P < B fII72 - (5)

We call (g,a,b) a Riesz-Gabor basis when (g, a,b) is a Riesz basis for its
linear span: there are C' > 0, D < oo (basis bounds) such that for all

d= (dnm)n,mez € lZ(Z2)

< Dldl . (6)

2
¢ ||d||i22 S HZ dnm 9na,mb 12

Assume that (g, a, b) is a Gabor frame with frame bounds A > 0, B < oc.
Then the frame operator S is defined on L*(R) by

Sf = Z (f7 gna,mb) Gna,mb » f S LZ(R) ; (7)

and is a bounded, positive definite linear operator of L*(R). When now
f € L*(R), we have the representation

f - S(Silf) - Z (Silfa gna,mb) gna,mb ) (8)

n,m

with L?(R) convergence at the right-hand side of (8).

It is here instructive to view the representation in (8) from the point of
view of generalized inverses in linear algebra. Assume that we have integers
M, N with M > N > 1, and let x1, ..., xj); € CV. The aim is to represent any
y € CV as a linear combination of 1, ..., ;. Thus, letting X be the N x M
matrix with columns x,...,2y , we want to write an arbitrary y € CV as
y = Xc with ¢ € ¢M. This is possible for all y if and only if the N x N
matrix XX/ is invertible (X is the M x N conjugate transpose of X).
When X X*# is invertible, we have for any y € ¢V

y= (XX (XX "y =Xe, (9)

where ¢ = X (XX#)~!y does the job. There may be more ¢’s that do the
job for this y, but ¢ is special in the sense that it has minimum Euclidean
norm among all ¢ € ¢V with y = Xe.

Accordingly, reading gnqmp as column vectors zy, f as y, S as XXH
and ((S™'f, Gnamb))nm @s ¢, we have that for any ¢ € [*(z?) with f =
>nm CnmYna,mp there holds

SIS, Gnamd) P < Jenml* - (10)
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The frame operator S commutes with all time-frequency shift operators
implicitly involved in the right-hand side series in (7). This holds also for
S~!, and using the symmetry of S and S™!, we get for the coefficients é,,, =
(S~ f, gnamp) in the representation (8) of f

6nm - (f; Silgna,mb) - (fa (Silg)na mb) (f fYna mb) ; (11)

where we have set %y = S~'g. We call this % the canonical dual corresponding
to the Gabor frame (g,a,b). The Gabor system (%,a,b) is also a Gabor
frame, with frame bounds B!, A~! and frame operator S .

Summarizing we have for a Gabor frame (g,a,b) and an f € L*(R) the
L*(R)-convergent representation

f Z ’yna mb gna mb (12)

and for any other representation f = Y, .. Cum Gnams With ¢ € 1*(2?), we

have
Z |(f7 OfYna,mb)|2 S Z |Cnm|2 . (13)

Now assume that (g,a,b) is a Riesz-Gabor basis, see (6). We let for
n',m' €7

V' = closed linear span of (gnq,mb)nmez » (14)
Vi = closed linear span of (gnamb)n,mez,(nm)#(n/m’) - (15)

Furthermore, we let P, s be the orthogonal projection onto V, ,, and we
let

In'am’'b — Pn’ m' In’a,m’b
h = : : : . (16)
o ||gn’a,m’b - Pn’,m’gn’a,m’b||2
Due to the assumption we have that ||h, .| is bounded between D~ and
C~!, and there is the biorthogonality relation

(gna,mba hn’,m’) - 5nn’ 6mm’ ) (17)

where we have used Kronecker’s delta. Hence, when (dp)nmez2 € (*(2%), we
can uniquely retrieve the data d,, from the modulated signal 3=, ., dnm Gna,ms
as

dpimy = (Z dnm Yna,mb> hn’,m’) ) n/’m/ €Z. (18)

n,m

In the picture of generalized inverses from linear algebra, we now consider
T1,....,oy € CV with integer M, N such that 1 < M < N, and we let X
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be the N x M-matrix with columns xy, ..., x5 (as before). Now we want a
left-inverse Y2 of X, i.e. an N x M-matrix Y such that Y# X = I, so that
for any ¢ € CM we can retrieve ¢ from Xc¢ as ¢ = Y#(X¢). This is possible
if and only if the M x M-matrix X7 X is invertible, and then a possible
choice for Y is X (X X) 1. This choice is special for the following reason.
The columns ¥, ..., ypr of Y all lie in the linear span of X and they satisfy
yHx, = 0. Hence y;, can be obtained as a multiple of xj, — Pyxy, where Py
is the orthogonal projector of CV onto the linear span of z;, [ # k.

Since the time-frequency shift operators f — f,, mp are unitary and com-
mute with the projection operators Py, it follows that

hn’,m’ - (OOV)n’a,m’b (19)

where we have denoted °°y = h,,. Furthermore, (°°v,a,b) is a Riesz-Gabor
basis, with closed linear span equal to V and with basis bounds D!, C!
(see (6)). Finally, when f € L?(R), the orthogonal projection Pf of f onto
V' is given by

Pf Z f}/na mb gna mb — Z (f7 gna,mb) Oo’}/na,mb . (20)

n,m

In particular, there holds for f € L*(R)

‘Z (OOfYna,mbaf)(fagna,mb)‘ - |(f7 Pf)| S ||f||2 . (21)

3 Proof of the density theorem

Besides the preliminaries in Sec. 2, there is one more ingredient needed in
proving the density theorem. This is what is called in physics the resolu-
tion of identity, [1], Secs. 2.4 and 2.7, and in time-frequency analysis the
orthogonality relation for the short-time Fourier transform, [4], Sec. 3.2, [5],
Prop. 8.1.2. It reads as follows. Let f,h,g,7 € L*(R). Then (f,7,,) and
(h, gz4) belong to L?(R?*) as functions of z,y € R, and

//f,%y (9ay> h) dxdy = (g,7)(f. h) . (22)

—00 —O0

We are now ready to prove the density theorem.

Proof of (i). Assume that (g, a,b) is a Gabor frame. We shall first show that
(g,%) = ab, where % = S~!g as in (11). To that end we take f,h € L*(R)
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with (f,h) # 0. Now for any z,y € R we have from (12) and the properties
of the time-frequency shift operators that

(f: h) = (ffx,fya hfx,fy) - Z (f: O’Vna+x,mb+y) (gna+x,mb+y7 h) . (23)

n,m

Integrating this identity over (z,y) € [0,a) x [0,b), we find

ab(fa h) = / / Z (fa o’yna-l-w,mb-‘ry) (gna—l—m,mb-‘rya h) dl’ dy =

oo o0

N / /(f7°%,y)(gm,y,h)dxdy=(g,"’y)(f,h)- (24)

Here we have used dominated convergence, also see (5), and (22). Hence

(9.%) = ab since (f, h) # 0.
Next consider the two representations

g= Z (ga Ofyna,mb) Gna,mb = 1- g + Z 0- Gna,mb - (25)
n,m (n,m)#(0,0)
Then (13) applied with f = g yields
Zlg, Ynamo) [ < 17+ Z 02=1. (26)
(n,m)#(0,0)

Hence ab = (g,%) = (9, %o,0) < 1, as required.
Proof of (ii). Assume that (g, a,b) is a Riesz-Gabor basis. Take f € L*(R)

with ||f|| = 1. By (17), applied with n = m = 0 = n’ = m/, and (19) and
(22), we have

1 = (00779):/ / ’Y:fmy fmya )dxdy -

a b
/ / Z (ooryna,mba f:l:,y) (fw,ya gna,mb) dx dy (27)
0 o mm

by dominated convergence, see also (21). Applying (21), with f = f,, and
z,y € [0,a) x [0,b), we find

a b
V< [ [ Mol dody = ab £ = ab (28)
0 0

Here it has been used that ||f,,[|* = ||f]|* for ,y € R by unitarity of the
time-frequency shift operators. Hence ab > 1, as required.
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4 The duality principle for Gabor systems

The notions of Gabor frame and of Riesz-Gabor basis are intimately related
through the duality principle for Gabor systems. The following holds. We
have that (g, a,b) is a Gabor frame if and only if (g, %, %) is a Riesz-Gabor
basis, and the frame bounds A, B in (5) and the basis bounds C, D in
(6) are related as C = abA, D = abB. The result is often referred to as
the Ron-Shen duality principle, see [6]. However, as is evidenced by the
acknowledgements section, Subsec 1.4 in [6], this principle was developed
independently and more or less simultaneously as well in [7] and [8], using
methods that are quite different from one another and from those in [6]. The
method given above to prove (i) and (ii) is contained in the approach to the
duality principle used in [7]. A further result of this duality principle is that
% and °°7 in the proofs of (i) and (ii) are related as %y = ab°°y (here (i) is
considered with a, b while (ii) is considered with §, I instead of a, b).
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